
OpenMP
Application Program

Interface

Examples

Version 4.0.1 - February 2014

Copyright © 1997-2014 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is granted,
provided the OpenMP Architecture Review Board copyright notice and
the title of this document appear. Notice is given that copying is by
permission of OpenMP Architecture Review Board.

This page intentionally left blank.

1

CONTENTS

 Introduction . 5

 Examples . 7

1 A Simple Parallel Loop . 7

2 The OpenMP Memory Model . 9

3 Conditional Compilation . 15

4 Internal Control Variables (ICVs) . 16

5 The parallel Construct . 19

6 Controlling the Number of Threads on Multiple Nesting Levels 21

7 Interaction Between the num_threads Clause
and omp_set_dynamic . 24

8 The proc_bind Clause . 26

9 Fortran Restrictions on the do Construct . 33

10 Fortran Private Loop Iteration Variables . 35

11 The nowait clause . 37

12 The collapse clause . 40

13 The parallel sections Construct . 45

14 The firstprivate Clause and the sections Construct 46

15 The single Construct . 48

16 Tasking Constructs . 50

17 The taskgroup Construct . 74

18 The taskyield Directive . 77

19 The workshare Construct . 79

20 The master Construct . 83

21 The critical Construct . 85

22 Worksharing Constructs Inside a critical Construct 87

23 Binding of barrier Regions . 89

2 OpenMP API • Version 4.0.1 - February 2014

24 The atomic Construct . 92

25 Restrictions on the atomic Construct . 98

26 The flush Construct without a List . 102

27 Placement of flush, barrier, taskwait
and taskyield Directives . 105

28 The ordered Clause and the ordered Construct 109

29 Cancellation Constructs . 113

30 The threadprivate Directive . 118

31 Parallel Random Access Iterator Loop . 124

32 Fortran Restrictions on shared and private Clauses with Common
Blocks . 125

33 The default(none) Clause . 127

34 Race Conditions Caused by Implied Copies of Shared Variables in
Fortran . 129

35 The private Clause . 130

36 Fortran Restrictions on Storage Association with the
private Clause . 134

37 C/C++ Arrays in a firstprivate Clause 137

38 The lastprivate Clause . 139

39 The reduction Clause . 140

40 The copyin Clause . 146

41 The copyprivate Clause . 148

42 Nested Loop Constructs . 152

43 Restrictions on Nesting of Regions . 156

44 The omp_set_dynamic and omp_set_num_threads Routines . . 162

45 The omp_get_num_threads Routine . 164

46 The omp_init_lock Routine . 166

47 Ownership of Locks . 167

48 Simple Lock Routines . 169

49 Nestable Lock Routines . 171

50 target Construct . 174

 3

51 target data Construct . 181

52 target update Construct . 192

53 declare target Construct . 196

54 teams Constructs . 204

55 Asynchronous Execution of a target Region Using Tasks 212

56 Array Sections in Device Constructs . 216

57 Device Routines . 220

58 Fortran ASSOCIATE Construct . 224

4 OpenMP API • Version 4.0.1 - February 2014

5

Introduction

This collection of programming examples supplements the OpenMP API for Shared
Memory Parallelization specifications, and is not part of the formal specifications. It
assumes familiarity with the OpenMP specifications, and shares the typographical
conventions used in that document.

Note – This first release of the OpenMP Examples reflects the OpenMP Version 4.0
specifications. Additional examples are being developed and will be published in future
releases of this document.

The OpenMP API specification provides a model for parallel programming that is
portable across shared memory architectures from different vendors. Compilers from
numerous vendors support the OpenMP API.

The directives, library routines, and environment variables demonstrated in this
document allow users to create and manage parallel programs while permitting
portability. The directives extend the C, C++ and Fortran base languages with single
program multiple data (SPMD) constructs, tasking constructs, device constructs,
worksharing constructs, and synchronization constructs, and they provide support for
sharing and privatizing data. The functionality to control the runtime environment is
provided by library routines and environment variables. Compilers that support the
OpenMP API often include a command line option to the compiler that activates and
allows interpretation of all OpenMP directives.

Complete information about the OpenMP API and a list of the compilers that support
the OpenMP API can be found at the OpenMP.org web site

http://www.openmp.org

6 OpenMP API • Version 4.0.1 - February 2014

This page is intentionally blank.

OpenMP Examples 7

Examples

The following are examples of the OpenMP API directives, constructs, and routines.

C/C++
A statement following a directive is compound only when necessary, and a non-

C/C++
compound statement is indented with respect to a directive preceding it.

1 A Simple Parallel Loop
The following example demonstrates how to parallelize a simple loop using the parallel
loop construct . The loop iteration variable is private by default, so it is not necessary to
specify it explicitly in a private clause.

C/C++
Example 1.1c

void simple(int n, float *a, float *b)
{
 int i;

#pragma omp parallel for
 for (i=1; i<n; i++) /* i is private by default */
 b[i] = (a[i] + a[i-1]) / 2.0;

C/C++
}

8 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 1.1f

 SUBROUTINE SIMPLE(N, A, B)

 INTEGER I, N
 REAL B(N), A(N)

!$OMP PARALLEL DO !I is private by default
 DO I=2,N
 B(I) = (A(I) + A(I-1)) / 2.0
 ENDDO
!$OMP END PARALLEL DO

Fortran

 END SUBROUTINE SIMPLE

OpenMP Examples 9

2 The OpenMP Memory Model
In the following example, at Print 1, the value of x could be either 2 or 5, depending on
the timing of the threads, and the implementation of the assignment to x. There are two
reasons that the value at Print 1 might not be 5. First, Print 1 might be executed before
the assignment to x is executed. Second, even if Print 1 is executed after the assignment,
the value 5 is not guaranteed to be seen by thread 1 because a flush may not have been
executed by thread 0 since the assignment.

The barrier after Print 1 contains implicit flushes on all threads, as well as a thread
synchronization, so the programmer is guaranteed that the value 5 will be printed by
both Print 2 and Print 3.

C/C++
Example 2.1c

#include <stdio.h>
#include <omp.h>

int main(){
 int x;

 x = 2;
 #pragma omp parallel num_threads(2) shared(x)

{

 if (omp_get_thread_num() == 0) {
 x = 5;
 } else {
 /* Print 1: the following read of x has a race */
 printf("1: Thread# %d: x = %d\n", omp_get_thread_num(),x);
 }

 #pragma omp barrier

 if (omp_get_thread_num() == 0) {
 /* Print 2 */
 printf("2: Thread# %d: x = %d\n", omp_get_thread_num(),x);
 } else {
 /* Print 3 */
 printf("3: Thread# %d: x = %d\n", omp_get_thread_num(),x);
 }
 }
 return 0;

C/C++
}

10 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 2.1f

PROGRAM MEMMODEL
 INCLUDE "omp_lib.h" ! or USE OMP_LIB
 INTEGER X

 X = 2
!$OMP PARALLEL NUM_THREADS(2) SHARED(X)

 IF (OMP_GET_THREAD_NUM() .EQ. 0) THEN
 X = 5
 ELSE
 ! PRINT 1: The following read of x has a race
 PRINT *,"1: THREAD# ", OMP_GET_THREAD_NUM(), "X = ", X
 ENDIF

 !$OMP BARRIER

 IF (OMP_GET_THREAD_NUM() .EQ. 0) THEN
 ! PRINT 2
 PRINT *,"2: THREAD# ", OMP_GET_THREAD_NUM(), "X = ", X
 ELSE
 ! PRINT 3
 PRINT *,"3: THREAD# ", OMP_GET_THREAD_NUM(), "X = ", X
 ENDIF

!$OMP END PARALLEL

Fortran

END PROGRAM MEMMODEL

The following example demonstrates why synchronization is difficult to perform
correctly through variables. The value of flag is undefined in both prints on thread 1 and
the value of data is only well-defined in the second print.

OpenMP Examples 11

C/C++
Example 2.2c

#include <omp.h>
#include <stdio.h>
int main()
{

int data;
int flag=0;
#pragma omp parallel num_threads(2)
{

if (omp_get_thread_num()==0)
{

/* Write to the data buffer that will be
read by thread */
data = 42;
/* Flush data to thread 1 and strictly order
the write to data
relative to the write to the flag */
#pragma omp flush(flag, data)
/* Set flag to release thread 1 */
flag = 1;
/* Flush flag to ensure that thread 1 sees
the change */
#pragma omp flush(flag)

}
else if(omp_get_thread_num()==1)
{

/* Loop until we see the update to the flag */
#pragma omp flush(flag, data)
while (flag < 1)

{
#pragma omp flush(flag, data)

}
/* Values of flag and data are undefined */
printf("flag=%d data=%d\n", flag, data);
#pragma omp flush(flag, data)
/* Values data will be 42, value of flag
still undefined */
printf("flag=%d data=%d\n", flag, data);

}
}
return 0;

C/C++
}

12 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 2.2f

PROGRAM EXAMPLE
 INCLUDE "omp_lib.h" ! or USE OMP_LIB
 INTEGER DATA
 INTEGER FLAG

FLAG = 0
 !$OMP PARALLEL NUM_THREADS(2)
 IF(OMP_GET_THREAD_NUM() .EQ. 0) THEN
 ! Write to the data buffer that will be read by thread 1
 DATA = 42
 ! Flush DATA to thread 1 and strictly order the write to DATA
 ! relative to the write to the FLAG
 !$OMP FLUSH(FLAG, DATA)
 ! Set FLAG to release thread 1
 FLAG = 1;
 ! Flush FLAG to ensure that thread 1 sees the change */
 !$OMP FLUSH(FLAG)
 ELSE IF(OMP_GET_THREAD_NUM() .EQ. 1) THEN
 ! Loop until we see the update to the FLAG
 !$OMP FLUSH(FLAG, DATA)
 DO WHILE(FLAG .LT. 1)
 !$OMP FLUSH(FLAG, DATA)
 ENDDO

 ! Values of FLAG and DATA are undefined
 PRINT *, 'FLAG=', FLAG, ' DATA=', DATA
 !$OMP FLUSH(FLAG, DATA)

 !Values DATA will be 42, value of FLAG still undefined */
 PRINT *, 'FLAG=', FLAG, ' DATA=', DATA
 ENDIF
 !$OMP END PARALLEL

Fortran

 END

The next example demonstrates why synchronization is difficult to perform correctly
through variables. Because the write(1)-flush(1)-flush(2)-read(2) sequence cannot be
guaranteed in the example, the statements on thread 0 and thread 1 may execute in either
order.

OpenMP Examples 13

C/C++
Example 2.3c

#include <omp.h>
#include <stdio.h>
int main()
{
 int flag=0;

 #pragma omp parallel num_threads(3)
 {
 if(omp_get_thread_num()==0)
 {
 /* Set flag to release thread 1 */
 #pragma omp atomic update
 flag++;
 /* Flush of flag is implied by the atomic directive */
 }
 else if(omp_get_thread_num()==1)
 {
 /* Loop until we see that flag reaches 1*/
 #pragma omp flush(flag)
 while(flag < 1)
 {
 #pragma omp flush(flag)
 }
 printf("Thread 1 awoken\n");

 /* Set flag to release thread 2 */
 #pragma omp atomic update
 flag++;
 /* Flush of flag is implied by the atomic directive */
 }
 else if(omp_get_thread_num()==2)
 {
 /* Loop until we see that flag reaches 2 */
 #pragma omp flush(flag)
 while(flag < 2)
 {
 #pragma omp flush(flag)
 }
 printf("Thread 2 awoken\n");
 }
 }

return 0;

C/C++
}

14 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 2.3f

PROGRAM EXAMPLE
 INCLUDE "omp_lib.h" ! or USE OMP_LIB
 INTEGER FLAG

FLAG = 0
!$OMP PARALLEL NUM_THREADS(3)

 IF(OMP_GET_THREAD_NUM() .EQ. 0) THEN
 ! Set flag to release thread 1

!$OMP ATOMIC UPDATE
 FLAG = FLAG + 1
 !Flush of FLAG is implied by the atomic directive
 ELSE IF(OMP_GET_THREAD_NUM() .EQ. 1) THEN
 ! Loop until we see that FLAG reaches 1
 !$OMP FLUSH(FLAG, DATA)
 DO WHILE(FLAG .LT. 1)
 !$OMP FLUSH(FLAG, DATA)
 ENDDO

 PRINT *, 'Thread 1 awoken'

 ! Set FLAG to release thread 2
 !$OMP ATOMIC UPDATE
 FLAG = FLAG + 1
 !Flush of FLAG is implied by the atomic directive
 ELSE IF(OMP_GET_THREAD_NUM() .EQ. 2) THEN
 ! Loop until we see that FLAG reaches 2
 !$OMP FLUSH(FLAG, DATA)
 DO WHILE(FLAG .LT. 2)
 !$OMP FLUSH(FLAG, DATA)
 ENDDO

 PRINT *, 'Thread 2 awoken'
 ENDIF
 !$OMP END PARALLEL

Fortran

 END

OpenMP Examples 15

3 Conditional Compilation

C/C++
The following example illustrates the use of conditional compilation using the OpenMP
macro _OPENMP . With OpenMP compilation, the _OPENMP macro becomes defined.

Example 3.1c

#include <stdio.h>

int main()
{

ifdef _OPENMP
 printf("Compiled by an OpenMP-compliant implementation.\n");
endif

 return 0;

C/C++
}

Fortran

The following example illustrates the use of the conditional compilation sentinel. With
OpenMP compilation, the conditional compilation sentinel !$ is recognized and treated
as two spaces. In fixed form source, statements guarded by the sentinel must start after
column 6.

Example 3.1f

 PROGRAM EXAMPLE

C234567890
!$ PRINT *, "Compiled by an OpenMP-compliant implementation."

Fortran

 END PROGRAM EXAMPLE

16 OpenMP API • Version 4.0.1 - February 2014

4 Internal Control Variables (ICVs)
According to $, an OpenMP implementation must act as if there are ICVs that control
the behavior of the program. This example illustrates two ICVs, nthreads-var and max-
active-levels-var. The nthreads-var ICV controls the number of threads requested for
encountered parallel regions; there is one copy of this ICV per task. The max-active-
levels-var ICV controls the maximum number of nested active parallel regions; there is
one copy of this ICV for the whole program.

In the following example, the nest-var, max-active-levels-var, dyn-var, and nthreads-var
ICVs are modified through calls to the runtime library routines omp_set_nested,
omp_set_max_active_levels, omp_set_dynamic, and
omp_set_num_threads respectively. These ICVs affect the operation of
parallel regions. Each implicit task generated by a parallel region has its own
copy of the nest-var, dyn-var, and nthreads-var ICVs.

In the following example, the new value of nthreads-var applies only to the implicit
tasks that execute the call to omp_set_num_threads. There is one copy of the max-
active-levels-var ICV for the whole program and its value is the same for all tasks. This
example assumes that nested parallelism is supported.

The outer parallel region creates a team of two threads; each of the threads will
execute one of the two implicit tasks generated by the outer parallel region.

Each implicit task generated by the outer parallel region calls
omp_set_num_threads(3), assigning the value 3 to its respective copy of
nthreads-var. Then each implicit task encounters an inner parallel region that
creates a team of three threads; each of the threads will execute one of the three implicit
tasks generated by that inner parallel region.

Since the outer parallel region is executed by 2 threads, and the inner by 3, there
will be a total of 6 implicit tasks generated by the two inner parallel regions.

Each implicit task generated by an inner parallel region will execute the call to
omp_set_num_threads(4), assigning the value 4 to its respective copy of
nthreads-var.

The print statement in the outer parallel region is executed by only one of the
threads in the team. So it will be executed only once.

The print statement in an inner parallel region is also executed by only one of the
threads in the team. Since we have a total of two inner parallel regions, the print
statement will be executed twice -- once per inner parallel region.

OpenMP Examples 17

C/C++
Example 4.1c

#include <stdio.h>
#include <omp.h>

int main (void)
{
 omp_set_nested(1);
 omp_set_max_active_levels(8);
 omp_set_dynamic(0);
 omp_set_num_threads(2);
 #pragma omp parallel
 {
 omp_set_num_threads(3);

 #pragma omp parallel
 {
 omp_set_num_threads(4);
 #pragma omp single
 {
 /*
 * The following should print:
 * Inner: max_act_lev=8, num_thds=3, max_thds=4
 * Inner: max_act_lev=8, num_thds=3, max_thds=4
 */
 printf ("Inner: max_act_lev=%d, num_thds=%d, max_thds=%d\n",
 omp_get_max_active_levels(), omp_get_num_threads(),
 omp_get_max_threads());
 }
 }

 #pragma omp barrier
 #pragma omp single
 {
 /*
 * The following should print:
 * Outer: max_act_lev=8, num_thds=2, max_thds=3
 */
 printf ("Outer: max_act_lev=%d, num_thds=%d, max_thds=%d\n",
 omp_get_max_active_levels(), omp_get_num_threads(),
 omp_get_max_threads());
 }
 }

return 0;

C/C++
}

18 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 4.1f

 program icv
 use omp_lib

 call omp_set_nested(.true.)
 call omp_set_max_active_levels(8)
 call omp_set_dynamic(.false.)
 call omp_set_num_threads(2)

!$omp parallel
 call omp_set_num_threads(3)

!$omp parallel
 call omp_set_num_threads(4)
!$omp single
! The following should print:
! Inner: max_act_lev= 8 , num_thds= 3 , max_thds= 4
! Inner: max_act_lev= 8 , num_thds= 3 , max_thds= 4
 print *, "Inner: max_act_lev=", omp_get_max_active_levels(),
 & ", num_thds=", omp_get_num_threads(),
 & ", max_thds=", omp_get_max_threads()
!$omp end single
!$omp end parallel

!$omp barrier
!$omp single
! The following should print:
! Outer: max_act_lev= 8 , num_thds= 2 , max_thds= 3
 print *, "Outer: max_act_lev=", omp_get_max_active_levels(),
 & ", num_thds=", omp_get_num_threads(),
 & ", max_thds=", omp_get_max_threads()
!$omp end single
!$omp end parallel

Fortran

 end

OpenMP Examples 19

5 The parallel Construct
The parallel construct can be used in coarse-grain parallel programs. In the
following example, each thread in the parallel region decides what part of the global
array x to work on, based on the thread number:

C/C++
Example 5.1c

#include <omp.h>

void subdomain(float *x, int istart, int ipoints)
{
 int i;

 for (i = 0; i < ipoints; i++)
 x[istart+i] = 123.456;
}

void sub(float *x, int npoints)
{
 int iam, nt, ipoints, istart;

#pragma omp parallel default(shared) private(iam,nt,ipoints,istart)
 {
 iam = omp_get_thread_num();
 nt = omp_get_num_threads();
 ipoints = npoints / nt; /* size of partition */
 istart = iam * ipoints; /* starting array index */
 if (iam == nt-1) /* last thread may do more */
 ipoints = npoints - istart;
 subdomain(x, istart, ipoints);
 }
}

int main()
{
 float array[10000];

 sub(array, 10000);

 return 0;

C/C++
}

20 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 5.1f

 SUBROUTINE SUBDOMAIN(X, ISTART, IPOINTS)
 INTEGER ISTART, IPOINTS
 REAL X(*)

 INTEGER I

 DO 100 I=1,IPOINTS
 X(ISTART+I) = 123.456
 100 CONTINUE

 END SUBROUTINE SUBDOMAIN

 SUBROUTINE SUB(X, NPOINTS)
 INCLUDE "omp_lib.h" ! or USE OMP_LIB

 REAL X(*)
 INTEGER NPOINTS
 INTEGER IAM, NT, IPOINTS, ISTART

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)

 IAM = OMP_GET_THREAD_NUM()
 NT = OMP_GET_NUM_THREADS()
 IPOINTS = NPOINTS/NT
 ISTART = IAM * IPOINTS
 IF (IAM .EQ. NT-1) THEN
 IPOINTS = NPOINTS - ISTART
 ENDIF
 CALL SUBDOMAIN(X,ISTART,IPOINTS)

!$OMP END PARALLEL
 END SUBROUTINE SUB

 PROGRAM PAREXAMPLE
 REAL ARRAY(10000)
 CALL SUB(ARRAY, 10000)

Fortran

END PROGRAM PAREXAMPLE

OpenMP Examples 21

6 Controlling the Number of Threads on
Multiple Nesting Levels
The following examples demonstrate how to use the OMP_NUM_THREADS environment
variable to control the number of threads on multiple nesting levels:

C/C++
Example 6.1c

#include <stdio.h>
#include <omp.h>
int main (void)
{

omp_set_nested(1);
omp_set_dynamic(0);
#pragma omp parallel
{

#pragma omp parallel
{

#pragma omp single
{
/*
* If OMP_NUM_THREADS=2,3 was set, the following should print:
* Inner: num_thds=3
* Inner: num_thds=3
*
* If nesting is not supported, the following should print:
* Inner: num_thds=1
* Inner: num_thds=1
*/

printf ("Inner: num_thds=%d\n", omp_get_num_threads());
}

}
#pragma omp barrier
omp_set_nested(0);
#pragma omp parallel
{

#pragma omp single
{
/*
* Even if OMP_NUM_THREADS=2,3 was set, the following should
* print, because nesting is disabled:
* Inner: num_thds=1
* Inner: num_thds=1
*/

printf ("Inner: num_thds=%d\n", omp_get_num_threads());
}

}

22 OpenMP API • Version 4.0.1 - February 2014

#pragma omp barrier
#pragma omp single
{

/*
* If OMP_NUM_THREADS=2,3 was set, the following should print:
* Outer: num_thds=2
*/
printf ("Outer: num_thds=%d\n", omp_get_num_threads());

}
}
return 0;

C/C++
}

Fortran

Example 6.1f

program icv
use omp_lib
call omp_set_nested(.true.)
call omp_set_dynamic(.false.)

!$omp parallel
!$omp parallel
!$omp single

! If OMP_NUM_THREADS=2,3 was set, the following should print:
! Inner: num_thds= 3
! Inner: num_thds= 3
! If nesting is not supported, the following should print:
! Inner: num_thds= 1
! Inner: num_thds= 1
print *, "Inner: num_thds=", omp_get_num_threads()

!$omp end single
!$omp end parallel
!$omp barrier

call omp_set_nested(.false.)
!$omp parallel
!$omp single

! Even if OMP_NUM_THREADS=2,3 was set, the following should print,
! because nesting is disabled:
! Inner: num_thds= 1
! Inner: num_thds= 1
print *, "Inner: num_thds=", omp_get_num_threads()

!$omp end single
!$omp end parallel
!$omp barrier
!$omp single

! If OMP_NUM_THREADS=2,3 was set, the following should print:
! Outer: num_thds= 2
print *, "Outer: num_thds=", omp_get_num_threads()

!$omp end single
!$omp end parallel

OpenMP Examples 23

end

Fortran

24 OpenMP API • Version 4.0.1 - February 2014

7 Interaction Between the num_threads
Clause and omp_set_dynamic
The following example demonstrates the num_threads clause and the effect of the
omp_set_dynamic routine on it.

The call to the omp_set_dynamic routine with argument 0 in C/C++, or .FALSE.
in Fortran, disables the dynamic adjustment of the number of threads in OpenMP
implementations that support it. In this case, 10 threads are provided. Note that in case
of an error the OpenMP implementation is free to abort the program or to supply any
number of threads available.

C/C++
Example 7.1c

#include <omp.h>
int main()
{
 omp_set_dynamic(0);
 #pragma omp parallel num_threads(10)
 {
 /* do work here */
 }
 return 0;

C/C++
}

Fortran

Example 7.1f

 PROGRAM EXAMPLE
 INCLUDE "omp_lib.h" ! or USE OMP_LIB
 CALL OMP_SET_DYNAMIC(.FALSE.)
!$OMP PARALLEL NUM_THREADS(10)
 ! do work here
!$OMP END PARALLEL

Fortran

 END PROGRAM EXAMPLE

OpenMP Examples 25

The call to the omp_set_dynamic routine with a non-zero argument in C/C++, or
.TRUE. in Fortran, allows the OpenMP implementation to choose any number of
threads between 1 and 10.

C/C++
Example 7.2c

#include <omp.h>
int main()
{
 omp_set_dynamic(1);
 #pragma omp parallel num_threads(10)
 {
 /* do work here */
 }
 return 0;

C/C++
}

Fortran

Example 7.2f

 PROGRAM EXAMPLE
 INCLUDE "omp_lib.h" ! or USE OMP_LIB
 CALL OMP_SET_DYNAMIC(.TRUE.)
!$OMP PARALLEL NUM_THREADS(10)
 ! do work here
!$OMP END PARALLEL

Fortran

 END PROGRAM EXAMPLE

It is good practice to set the dyn-var ICV explicitly by calling the omp_set_dynamic
routine, as its default setting is implementation defined.

26 OpenMP API • Version 4.0.1 - February 2014

8 The proc_bind Clause
The following examples demonstrate how to use the proc_bind clause to control the
thread binding for a team of threads in a parallel region. The machine architecture is
depicted in the figure below. It consists of two sockets, each equipped with a quad-core
processor and configured to execute two hardware threads simultaneously on each core.
These examples assume a contiguous core numbering starting from 0, such that the
hardware threads 0,1 form the first physical core.

The following equivalent place list declarations consist of eight places (which we
designate as p0 to p7):

OMP_PLACES="{0,1},{2,3},{4,5},{6,7},{8,9},{10,11},{12,13},{14,15}"

or

OMP_PLACES="{0:2}:8:2"

Spread Affinity Policy
The following example shows the result of the spread affinity policy on the partition
list when the number of threads is less than or equal to the number of places in the
parent's place partition, for the machine architecture depicted above. Note that the
threads are bound to the first place of each subpartition.

p0 p1 p2 p3

physical core w/ 2
hardware threads

socket w/
4 physical cores

p4 p5 p6 p7

OpenMP Examples 27

C/C++
Example 8.1c

void work();
void main()
{
#pragma omp parallel proc_bind(spread) num_threads(4)
 {
 work();
 }

C/C++
}

Fortran

Example 8.1f

PROGRAM EXAMPLE
!$OMP PARALLEL PROC_BIND(SPREAD) NUM_THREADS(4)
 CALL WORK()
!$OMP END PARALLEL

Fortran

 END PROGRAM EXAMPLE

It is unspecified on which place the master thread is initially started. If the master thread
is initially started on p0, the following placement of threads will be applied in the
parallel region:

• thread 0 executes on p0 with the place partition p0,p1

• thread 1 executes on p2 with the place partition p2,p3

• thread 2 executes on p4 with the place partition p4,p5

• thread 3 executes on p6 with the place partition p6,p7

If the master thread would initially be started on p2, the placement of threads and
distribution of the place partition would be as follows:

• thread 0 executes on p2 with the place partition p2,p3

• thread 1 executes on p4 with the place partition p4,p5

• thread 2 executes on p6 with the place partition p6,p7

• thread 3 executes on p0 with the place partition p0,p1

The following example illustrates the spread thread affinity policy when the number
of threads is greater than the number of places in the parent's place partition.

28 OpenMP API • Version 4.0.1 - February 2014

Let T be the number of threads in the team, and P be the number of places in the parent's
place partition. The first T/P threads of the team (including the master thread) execute
on the parent’s place. The next T/P threads execute on the next place in the place
partition, and so on, with wrap around.

C/C++
Example 8.2c

void work();
void foo()
{
 #pragma omp parallel num_threads(16) proc_bind(spread)
 {
 work();
 }

C/C++
}

Fortran

Example 8.2f

subroutine foo
!$omp parallel num_threads(16) proc_bind(spread)
 call work()
!$omp end parallel

Fortran

end subroutine

It is unspecified on which place the master thread is initially started. If the master thread
is initially started on p0, the following placement of threads will be applied in the
parallel region:

• threads 0,1 execute on p0 with the place partition p0

• threads 2,3 execute on p1 with the place partition p1

• threads 4,5 execute on p2 with the place partition p2

• threads 6,7 execute on p3 with the place partition p3

• threads 8,9 execute on p4 with the place partition p4

• threads 10,11 execute on p5 with the place partition p5

• threads 12,13 execute on p6 with the place partition p6

• threads 14,15 execute on p7 with the place partition p7

OpenMP Examples 29

If the master thread would initially be started on p2, the placement of threads and
distribution of the place partition would be as follows:

• threads 0,1 execute on p2 with the place partition p2

• threads 2,3 execute on p3 with the place partition p3

• threads 4,5 execute on p4 with the place partition p4

• threads 6,7 execute on p5 with the place partition p5

• threads 8,9 execute on p6 with the place partition p6

• threads 10,11 execute on p7 with the place partition p7

• threads 12,13 execute on p0 with the place partition p0

• threads 14,15 execute on p1 with the place partition p1

Close Affinity Policy
The following example shows the result of the close affinity policy on the partition
list when the number of threads is less than or equal to the number of places in parent's
place partition, for the machine architecture depicted above. The place partition is not
changed by the close policy.

C/C++
Example 8.3c

void work();
void main()
{
#pragma omp parallel proc_bind(close) num_threads(4)
 {
 work();
 }

C/C++
}

Fortran

Example 8.3f

PROGRAM EXAMPLE
!$OMP PARALLEL PROC_BIND(CLOSE) NUM_THREADS(4)
 CALL WORK()
!$OMP END PARALLEL

Fortran

 END PROGRAM EXAMPLE

30 OpenMP API • Version 4.0.1 - February 2014

It is unspecified on which place the master thread is initially started. If the master thread
is initially started on p0, the following placement of threads will be applied in the
parallel region:

• thread 0 executes on p0 with the place partition p0-p7

• thread 1 executes on p1 with the place partition p0-p7

• thread 2 executes on p2 with the place partition p0-p7

• thread 3 executes on p3 with the place partition p0-p7

If the master thread would initially be started on p2, the placement of threads and
distribution of the place partition would be as follows:

• thread 0 executes on p2 with the place partition p0-p7

• thread 1 executes on p3 with the place partition p0-p7

• thread 2 executes on p4 with the place partition p0-p7

• thread 3 executes on p5 with the place partition p0-p7

The following example illustrates the close thread affinity policy when the number of
threads is greater than the number of places in the parent's place partition.

Let T be the number of threads in the team, and P be the number of places in the parent's
place partition. The first T/P threads of the team (including the master thread) execute
on the parent’s place. The next T/P threads execute on the next place in the place
partition, and so on, with wrap around. The place partition is not changed by the close
policy.

C/C++
Example 8.4c

void work();
void foo()
{
 #pragma omp parallel num_threads(16) proc_bind(close)
 {
 work();
 }

C/C++
}

Fortran

Example 8.4f

subroutine foo
!$omp parallel num_threads(16) proc_bind(close)
 call work()

OpenMP Examples 31

!$omp end parallel

Fortran

end subroutine

It is unspecified on which place the master thread is initially started. If the master thread
is initially running on p0, the following placement of threads will be applied in the
parallel region:

• threads 0,1 execute on p0 with the place partition p0-p7

• threads 2,3 execute on p1 with the place partition p0-p7

• threads 4,5 execute on p2 with the place partition p0-p7

• threads 6,7 execute on p3 with the place partition p0-p7

• threads 8,9 execute on p4 with the place partition p0-p7

• threads 10,11 execute on p5 with the place partition p0-p7

• threads 12,13 execute on p6 with the place partition p0-p7

• threads 14,15 execute on p7 with the place partition p0-p7

If the master thread would initially be started on p2, the placement of threads and
distribution of the place partition would be as follows:

• threads 0,1 execute on p2 with the place partition p0-p7

• threads 2,3 execute on p3 with the place partition p0-p7

• threads 4,5 execute on p4 with the place partition p0-p7

• threads 6,7 execute on p5 with the place partition p0-p7

• threads 8,9 execute on p6 with the place partition p0-p7

• threads 10,11 execute on p7 with the place partition p0-p7

• threads 12,13 execute on p0 with the place partition p0-p7

• threads 14,15 execute on p1 with the place partition p0-p7

32 OpenMP API • Version 4.0.1 - February 2014

Master Affinity Policy
The following example shows the result of the master affinity policy on the partition
list for the machine architecture depicted above. The place partition is not changed by
the master policy.

C/C++
Example 8.5c

void work();
void main()
{
#pragma omp parallel proc_bind(master) num_threads(4)
 {
 work();
 }

C/C++
}

Fortran

Example 8.5f

PROGRAM EXAMPLE
!$OMP PARALLEL PROC_BIND(MASTER) NUM_THREADS(4)
 CALL WORK()
!$OMP END PARALLEL

Fortran

 END PROGRAM EXAMPLE

It is unspecified on which place the master thread is initially started. If the master thread
is initially running on p0, the following placement of threads will be applied in the
parallel region:

• threads 0-3 execute on p0 with the place partition p0-p7

If the master thread would initially be started on p2, the placement of threads and
distribution of the place partition would be as follows:

• threads 0-3 execute on p2 with the place partition p0-p7

OpenMP Examples 33

Fortran

9 Fortran Restrictions on the do Construct
If an end do directive follows a do-construct in which several DO statements share a
DO termination statement, then a do directive can only be specified for the outermost of
these DO statements. The following example contains correct usages of loop constructs:

Example 9.1f

 SUBROUTINE WORK(I, J)
 INTEGER I,J
 END SUBROUTINE WORK

 SUBROUTINE DO_GOOD()
 INTEGER I, J
 REAL A(1000)

 DO 100 I = 1,10
!$OMP DO
 DO 100 J = 1,10
 CALL WORK(I,J)
100 CONTINUE ! !$OMP ENDDO implied here

!$OMP DO
 DO 200 J = 1,10
200 A(I) = I + 1
!$OMP ENDDO

!$OMP DO
 DO 300 I = 1,10
 DO 300 J = 1,10
 CALL WORK(I,J)
300 CONTINUE
!$OMP ENDDO
 END SUBROUTINE DO_GOOD

The following example is non-conforming because the matching do directive for the
end do does not precede the outermost loop:

Example 9.2f

 SUBROUTINE WORK(I, J)
 INTEGER I,J
 END SUBROUTINE WORK

 SUBROUTINE DO_WRONG
 INTEGER I, J

34 OpenMP API • Version 4.0.1 - February 2014

 DO 100 I = 1,10
!$OMP DO
 DO 100 J = 1,10
 CALL WORK(I,J)
100 CONTINUE
!$OMP ENDDO

Fortran

 END SUBROUTINE DO_WRONG

OpenMP Examples 35

Fortran

10 Fortran Private Loop Iteration Variables
In general loop iteration variables will be private, when used in the do-loop of a do and
parallel do construct or in sequential loops in a parallel construct (see $ and
$). In the following example of a sequential loop in a parallel construct the loop
iteration variable I will be private.

Example 10.1f

SUBROUTINE PLOOP_1(A,N)
INCLUDE "omp_lib.h" ! or USE OMP_LIB

REAL A(*)
INTEGER I, MYOFFSET, N

!$OMP PARALLEL PRIVATE(MYOFFSET)
 MYOFFSET = OMP_GET_THREAD_NUM()*N
 DO I = 1, N
 A(MYOFFSET+I) = FLOAT(I)
 ENDDO
!$OMP END PARALLEL

END SUBROUTINE PLOOP_1

In exceptional cases, loop iteration variables can be made shared, as in the following
example:

Example 10.2f

SUBROUTINE PLOOP_2(A,B,N,I1,I2)
REAL A(*), B(*)
INTEGER I1, I2, N

!$OMP PARALLEL SHARED(A,B,I1,I2)
!$OMP SECTIONS
!$OMP SECTION
 DO I1 = I1, N
 IF (A(I1).NE.0.0) EXIT
 ENDDO
!$OMP SECTION
 DO I2 = I2, N
 IF (B(I2).NE.0.0) EXIT
 ENDDO
!$OMP END SECTIONS
!$OMP SINGLE
 IF (I1.LE.N) PRINT *, 'ITEMS IN A UP TO ', I1, 'ARE ALL ZERO.'
 IF (I2.LE.N) PRINT *, 'ITEMS IN B UP TO ', I2, 'ARE ALL ZERO.'
!$OMP END SINGLE

36 OpenMP API • Version 4.0.1 - February 2014

!$OMP END PARALLEL

END SUBROUTINE PLOOP_2

Note however that the use of shared loop iteration variables can easily lead to race

Fortran

conditions.

OpenMP Examples 37

11 The nowait clause
If there are multiple independent loops within a parallel region, you can use the
nowait clause to avoid the implied barrier at the end of the loop construct, as follows:

C/C++
Example 11.1c

#include <math.h>

void nowait_example(int n, int m, float *a, float *b, float *y, float *z)
{
 int i;
 #pragma omp parallel
 {
 #pragma omp for nowait
 for (i=1; i<n; i++)
 b[i] = (a[i] + a[i-1]) / 2.0;

 #pragma omp for nowait
 for (i=0; i<m; i++)
 y[i] = sqrt(z[i]);
 }

C/C++
}

Fortran

Example 11.1f

SUBROUTINE NOWAIT_EXAMPLE(N, M, A, B, Y, Z)

 INTEGER N, M
 REAL A(*), B(*), Y(*), Z(*)

 INTEGER I

!$OMP PARALLEL

!$OMP DO
 DO I=2,N
 B(I) = (A(I) + A(I-1)) / 2.0
 ENDDO
!$OMP END DO NOWAIT

!$OMP DO
 DO I=1,M

38 OpenMP API • Version 4.0.1 - February 2014

 Y(I) = SQRT(Z(I))
 ENDDO
!$OMP END DO NOWAIT

!$OMP END PARALLEL

Fortran

 END SUBROUTINE NOWAIT_EXAMPLE

In the following example, static scheduling distributes the same logical iteration
numbers to the threads that execute the three loop regions. This allows the nowait
clause to be used, even though there is a data dependence between the loops. The
dependence is satisfied as long the same thread executes the same logical iteration
numbers in each loop.

Note that the iteration count of the loops must be the same. The example satisfies this
requirement, since the iteration space of the first two loops is from 0 to n-1 (from 1 to
N in the Fortran version), while the iteration space of the last loop is from 1 to n (2 to
N+1 in the Fortran version).

C/C++
Example 11.2c

#include <math.h>
void nowait_example2(int n, float *a, float *b, float *c, float *y, float *z)
{

int i;
#pragma omp parallel

{
#pragma omp for schedule(static) nowait

for (i=0; i<n; i++)
c[i] = (a[i] + b[i]) / 2.0f;

#pragma omp for schedule(static) nowait
for (i=0; i<n; i++)

z[i] = sqrtf(c[i]);
#pragma omp for schedule(static) nowait

for (i=1; i<=n; i++)
y[i] = z[i-1] + a[i];

}

C/C++
}

Fortran

Example 11.2f

SUBROUTINE NOWAIT_EXAMPLE2(N, A, B, C, Y, Z)
INTEGER N
REAL A(*), B(*), C(*), Y(*), Z(*)
INTEGER I

!$OMP PARALLEL
!$OMP DO SCHEDULE(STATIC)

OpenMP Examples 39

DO I=1,N
C(I) = (A(I) + B(I)) / 2.0

ENDDO
!$OMP END DO NOWAIT
!$OMP DO SCHEDULE(STATIC)

DO I=1,N
Z(I) = SQRT(C(I))

ENDDO
!$OMP END DO NOWAIT
!$OMP DO SCHEDULE(STATIC)

DO I=2,N+1
Y(I) = Z(I-1) + A(I)

ENDDO
!$OMP END DO NOWAIT
!$OMP END PARALLEL

Fortran

END SUBROUTINE NOWAIT_EXAMPLE2

40 OpenMP API • Version 4.0.1 - February 2014

12 The collapse clause
In the following example, the k and j loops are associated with the loop construct. So
the iterations of the k and j loops are collapsed into one loop with a larger iteration
space, and that loop is then divided among the threads in the current team. Since the i
loop is not associated with the loop construct, it is not collapsed, and the i loop is
executed sequentially in its entirety in every iteration of the collapsed k and j loop.

C/C++
The variable j can be omitted from the private clause when the collapse clause
is used since it is implicitly private. However, if the collapse clause is omitted then
j will be shared if it is omitted from the private clause. In either case, k is implicitly
private and could be omitted from the private clause.

Example 12.1c

void bar(float *a, int i, int j, int k);
int kl, ku, ks, jl, ju, js, il, iu,is;
void sub(float *a)
{
 int i, j, k;
 #pragma omp for collapse(2) private(i, k, j)
 for (k=kl; k<=ku; k+=ks)
 for (j=jl; j<=ju; j+=js)
 for (i=il; i<=iu; i+=is)
 bar(a,i,j,k);

C/C++
}

Fortran

Example 12.1f

subroutine sub(a)
real a(*)
integer kl, ku, ks, jl, ju, js, il, iu, is
common /csub/ kl, ku, ks, jl, ju, js, il, iu, is
integer i, j, k

!$omp do collapse(2) private(i,j,k)
 do k = kl, ku, ks
 do j = jl, ju, js
 do i = il, iu, is
 call bar(a,i,j,k)
 enddo
 enddo
 enddo

OpenMP Examples 41

!$omp end do

Fortran

end subroutine

In the next example, the k and j loops are associated with the loop construct. So the
iterations of the k and j loops are collapsed into one loop with a larger iteration space,
and that loop is then divided among the threads in the current team.

The sequential execution of the iterations in the k and j loops determines the order of
the iterations in the collapsed iteration space. This implies that in the sequentially last
iteration of the collapsed iteration space, k will have the value 2 and j will have the
value 3. Since klast and jlast are lastprivate, their values are assigned by the
sequentially last iteration of the collapsed k and j loop. This example prints: 2 3.

42 OpenMP API • Version 4.0.1 - February 2014

C/C++
Example 12.2c

#include <stdio.h>
void test()
{
 int j, k, jlast, klast;
 #pragma omp parallel
 {
 #pragma omp for collapse(2) lastprivate(jlast, klast)
 for (k=1; k<=2; k++)
 for (j=1; j<=3; j++)
 {
 jlast=j;
 klast=k;
 }
 #pragma omp single
 printf("%d %d\n", klast, jlast);
 }

C/C++
}

Fortran

Example 12.2f

program test
!$omp parallel
!$omp do private(j,k) collapse(2) lastprivate(jlast, klast)
 do k = 1,2
 do j = 1,3

jlast=j
klast=k

 enddo
 enddo
!$omp end do
!$omp single
 print *, klast, jlast
!$omp end single
!$omp end parallel

Fortran

end program test

The next example illustrates the interaction of the collapse and ordered clauses.

OpenMP Examples 43

In the example, the loop construct has both a collapse clause and an ordered
clause. The collapse clause causes the iterations of the k and j loops to be collapsed
into one loop with a larger iteration space, and that loop is divided among the threads in
the current team. An ordered clause is added to the loop construct, because an
ordered region binds to the loop region arising from the loop construct.

According to $, a thread must not execute more than one ordered region that binds to the
same loop region. So the collapse clause is required for the example to be
conforming. With the collapse clause, the iterations of the k and j loops are
collapsed into one loop, and therefore only one ordered region will bind to the collapsed
k and j loop. Without the collapse clause, there would be two ordered regions that
bind to each iteration of the k loop (one arising from the first iteration of the j loop, and
the other arising from the second iteration of the j loop).

The code prints
0 1 1
0 1 2
0 2 1
1 2 2
1 3 1
1 3 2

C/C++
Example 12.3c

#include <omp.h>
#include <stdio.h>
void work(int a, int j, int k);
void sub()
{
 int j, k, a;
 #pragma omp parallel num_threads(2)
 {
 #pragma omp for collapse(2) ordered private(j,k) schedule(static,3)
 for (k=1; k<=3; k++)
 for (j=1; j<=2; j++)
 {
 #pragma omp ordered
 printf("%d %d %d\n", omp_get_thread_num(), k, j);
 /* end ordered */
 work(a,j,k);
 }
 }

C/C++
}

44 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 12.3f

program test
include 'omp_lib.h'

!$omp parallel num_threads(2)
!$omp do collapse(2) ordered private(j,k) schedule(static,3)
 do k = 1,3
 do j = 1,2
!$omp ordered

print *, omp_get_thread_num(), k, j
!$omp end ordered
 call work(a,j,k)
 enddo
 enddo
!$omp end do
!$omp end parallel

Fortran

end program test

OpenMP Examples 45

13 The parallel sections Construct
In the following example routines XAXIS, YAXIS, and ZAXIS can be executed
concurrently. The first section directive is optional. Note that all section directives
need to appear in the parallel sections construct.

C/C++
Example 13.1c

void XAXIS();
void YAXIS();
void ZAXIS();

void sect_example()
{
 #pragma omp parallel sections
 {
 #pragma omp section
 XAXIS();

 #pragma omp section
 YAXIS();

 #pragma omp section
 ZAXIS();
 }

C/C++
}

Fortran

Example 13.1f

 SUBROUTINE SECT_EXAMPLE()
!$OMP PARALLEL SECTIONS
!$OMP SECTION
 CALL XAXIS()
!$OMP SECTION
 CALL YAXIS()

!$OMP SECTION
 CALL ZAXIS()

!$OMP END PARALLEL SECTIONS

Fortran

 END SUBROUTINE SECT_EXAMPLE

46 OpenMP API • Version 4.0.1 - February 2014

14 The firstprivate Clause and the
sections Construct
In the following example of the sections construct the firstprivate clause is
used to initialize the private copy of section_count of each thread. The problem is
that the section constructs modify section_count, which breaks the
independence of the section constructs. When different threads execute each section,
both sections will print the value 1. When the same thread executes the two sections,
one section will print the value 1 and the other will print the value 2. Since the order of
execution of the two sections in this case is unspecified, it is unspecified which section
prints which value.

C/C++
Example 14.1c

#include <omp.h>
#include <stdio.h>
#define NT 4
int main() {
 int section_count = 0;
 omp_set_dynamic(0);
 omp_set_num_threads(NT);
#pragma omp parallel
#pragma omp sections firstprivate(section_count)
{
#pragma omp section
 {
 section_count++;
 /* may print the number one or two */
 printf("section_count %d\n", section_count);
 }
#pragma omp section
 {
 section_count++;
 /* may print the number one or two */
 printf("section_count %d\n", section_count);
 }
}
 return 1;

C/C++
}

OpenMP Examples 47

Fortran

Example 14.1f

program section
 use omp_lib
 integer :: section_count = 0
 integer, parameter :: NT = 4
 call omp_set_dynamic(.false.)
 call omp_set_num_threads(NT)
!$omp parallel
!$omp sections firstprivate (section_count)
!$omp section
 section_count = section_count + 1
! may print the number one or two
 print *, 'section_count', section_count
!$omp section
 section_count = section_count + 1
! may print the number one or two
 print *, 'section_count', section_count
!$omp end sections
!$omp end parallel

Fortran

end program section

48 OpenMP API • Version 4.0.1 - February 2014

15 The single Construct
The following example demonstrates the single construct . In the example, only one
thread prints each of the progress messages. All other threads will skip the single
region and stop at the barrier at the end of the single construct until all threads in the
team have reached the barrier. If other threads can proceed without waiting for the
thread executing the single region, a nowait clause can be specified, as is done in
the third single construct in this example. The user must not make any assumptions as
to which thread will execute a single region.

C/C++
Example 15.1c

#include <stdio.h>

void work1() {}
void work2() {}

void single_example()
{
 #pragma omp parallel
 {
 #pragma omp single
 printf("Beginning work1.\n");

 work1();

 #pragma omp single
 printf("Finishing work1.\n");

 #pragma omp single nowait
 printf("Finished work1 and beginning work2.\n");

 work2();
 }

C/C++
}

Fortran

Example 15.1f

 SUBROUTINE WORK1()
 END SUBROUTINE WORK1

 SUBROUTINE WORK2()

OpenMP Examples 49

 END SUBROUTINE WORK2

 PROGRAM SINGLE_EXAMPLE
!$OMP PARALLEL

!$OMP SINGLE
 print *, "Beginning work1."
!$OMP END SINGLE

 CALL WORK1()

!$OMP SINGLE
 print *, "Finishing work1."
!$OMP END SINGLE

!$OMP SINGLE
 print *, "Finished work1 and beginning work2."
!$OMP END SINGLE NOWAIT

 CALL WORK2()

!$OMP END PARALLEL

Fortran

 END PROGRAM SINGLE_EXAMPLE

50 OpenMP API • Version 4.0.1 - February 2014

16 Tasking Constructs
The following example shows how to traverse a tree-like structure using explicit tasks.
Note that the traverse function should be called from within a parallel region for the
different specified tasks to be executed in parallel. Also note that the tasks will be
executed in no specified order because there are no synchronization directives. Thus,
assuming that the traversal will be done in post order, as in the sequential code, is
wrong.

C/C++
Example 16.1c

struct node {
struct node *left;
struct node *right;

};
extern void process(struct node *);
void traverse(struct node *p) {
 if (p->left)
#pragma omp task // p is firstprivate by default
 traverse(p->left);
 if (p->right)
#pragma omp task // p is firstprivate by default
 traverse(p->right);
 process(p);

C/C++
}

Fortran

Example 16.1f

RECURSIVE SUBROUTINE traverse (P)
 TYPE Node
 TYPE(Node), POINTER :: left, right
 END TYPE Node
 TYPE(Node) :: P
 IF (associated(P%left)) THEN
 !$OMP TASK ! P is firstprivate by default
 call traverse(P%left)
 !$OMP END TASK
 ENDIF
 IF (associated(P%right)) THEN
 !$OMP TASK ! P is firstprivate by default
 call traverse(P%right)
 !$OMP END TASK

OpenMP Examples 51

 ENDIF
 CALL process (P)

Fortran

 END SUBROUTINE

In the next example, we force a postorder traversal of the tree by adding a taskwait
directive. Now, we can safely assume that the left and right sons have been executed
before we process the current node.

C/C++
Example 16.2c

struct node {
struct node *left;
struct node *right;

};
extern void process(struct node *);
void postorder_traverse(struct node *p) {
 if (p->left)
 #pragma omp task // p is firstprivate by default

postorder_traverse(p->left);
 if (p->right)
 #pragma omp task // p is firstprivate by default

postorder_traverse(p->right);
 #pragma omp taskwait
 process(p);

C/C++
}

Fortran

Example 16.2f

RECURSIVE SUBROUTINE traverse (P)
 TYPE Node
 TYPE(Node), POINTER :: left, right
 END TYPE Node
 TYPE(Node) :: P
 IF (associated(P%left)) THEN
 !$OMP TASK ! P is firstprivate by default
 call traverse(P%left)
 !$OMP END TASK
 ENDIF
 IF (associated(P%right)) THEN
 !$OMP TASK ! P is firstprivate by default

call traverse(P%right)
 !$OMP END TASK
 ENDIF
 !$OMP TASKWAIT

52 OpenMP API • Version 4.0.1 - February 2014

 CALL process (P)

Fortran

 END SUBROUTINE

The following example demonstrates how to use the task construct to process elements
of a linked list in parallel. The thread executing the single region generates all of the
explicit tasks, which are then executed by the threads in the current team. The pointer p
is firstprivate by default on the task construct so it is not necessary to specify it
in a firstprivate clause.

C/C++
Example 16.3c

typedef struct node node;
struct node {
 int data;
 node * next;
};

void process(node * p)
{
 /* do work here */
}
void increment_list_items(node * head)
{
 #pragma omp parallel
 {
 #pragma omp single
 {
 node * p = head;
 while (p) {
 #pragma omp task

// p is firstprivate by default
 process(p);
 p = p->next;

}
 }

}

C/C++
}

Fortran

Example 16.3f

 MODULE LIST
 TYPE NODE
 INTEGER :: PAYLOAD
 TYPE (NODE), POINTER :: NEXT

OpenMP Examples 53

 END TYPE NODE
 CONTAINS
 SUBROUTINE PROCESS(p)
 TYPE (NODE), POINTER :: P
 ! do work here

END SUBROUTINE
SUBROUTINE INCREMENT_LIST_ITEMS (HEAD)

 TYPE (NODE), POINTER :: HEAD
 TYPE (NODE), POINTER :: P
 !$OMP PARALLEL PRIVATE(P)
 !$OMP SINGLE
 P => HEAD
 DO
 !$OMP TASK

! P is firstprivate by default
 CALL PROCESS(P)
 !$OMP END TASK
 P => P%NEXT
 IF (.NOT. ASSOCIATED (P)) EXIT
 END DO
 !$OMP END SINGLE
 !$OMP END PARALLEL
 END SUBROUTINE

Fortran

 END MODULE

The fib() function should be called from within a parallel region for the different
specified tasks to be executed in parallel. Also, only one thread of the parallel
region should call fib() unless multiple concurrent Fibonacci computations are
desired.

C/C++
Example 16.4c

 int fib(int n) {
 int i, j;
 if (n<2)
 return n;
 else {
 #pragma omp task shared(i)
 i=fib(n-1);
 #pragma omp task shared(j)
 j=fib(n-2);
 #pragma omp taskwait
 return i+j;
 }

C/C++
 }

54 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 16.4f

 RECURSIVE INTEGER FUNCTION fib(n) RESULT(res)
 INTEGER n, i, j
 IF (n .LT. 2) THEN
 res = n
 ELSE
!$OMP TASK SHARED(i)
 i = fib(n-1)
!$OMP END TASK
!$OMP TASK SHARED(j)
 j = fib(n-2)
!$OMP END TASK
!$OMP TASKWAIT
 res = i+j
 END IF

Fortran

 END FUNCTION

Note: There are more efficient algorithms for computing Fibonacci numbers. This
classic recursion algorithm is for illustrative purposes.

The following example demonstrates a way to generate a large number of tasks with one
thread and execute them with the threads in the team. While generating these tasks, the
implementation may reach its limit on unassigned tasks. If it does, the implementation
is allowed to cause the thread executing the task generating loop to suspend its task at
the task scheduling point in the task directive, and start executing unassigned tasks.
Once the number of unassigned tasks is sufficiently low, the thread may resume
execution of the task generating loop.

C/C++
Example 16.5c

#define LARGE_NUMBER 10000000
double item[LARGE_NUMBER];
extern void process(double);

int main() {
#pragma omp parallel

{
 #pragma omp single
 {
 int i;
 for (i=0; i<LARGE_NUMBER; i++)
 #pragma omp task // i is firstprivate, item is shared
 process(item[i]);
 }

OpenMP Examples 55

}

C/C++
}

Fortran

Example 16.5f

real*8 item(10000000)
integer i

!$omp parallel
!$omp single ! loop iteration variable i is private

do i=1,10000000
!$omp task

! i is firstprivate, item is shared
call process(item(i))

!$omp end task
end do

!$omp end single
!$omp end parallel

Fortran

end

The following example is the same as the previous one, except that the tasks are
generated in an untied task. While generating the tasks, the implementation may reach
its limit on unassigned tasks. If it does, the implementation is allowed to cause the
thread executing the task generating loop to suspend its task at the task scheduling point
in the task directive, and start executing unassigned tasks. If that thread begins
execution of a task that takes a long time to complete, the other threads may complete
all the other tasks before it is finished.

In this case, since the loop is in an untied task, any other thread is eligible to resume the
task generating loop. In the previous examples, the other threads would be forced to idle
until the generating thread finishes its long task, since the task generating loop was in a
tied task.

C/C++
Example 16.6c

#define LARGE_NUMBER 10000000
double item[LARGE_NUMBER];
extern void process(double);
int main() {
#pragma omp parallel

{
 #pragma omp single
 {

56 OpenMP API • Version 4.0.1 - February 2014

 int i;
 #pragma omp task untied

// i is firstprivate, item is shared
 {
 for (i=0; i<LARGE_NUMBER; i++)
 #pragma omp task
 process(item[i]);
 }
 }

}
return 0;

C/C++
}

Fortran

Example 16.6f

real*8 item(10000000)
!$omp parallel
!$omp single
!$omp task untied

! loop iteration variable i is private
do i=1,10000000

!$omp task ! i is firstprivate, item is shared
call process(item(i))

!$omp end task
end do

!$omp end task
!$omp end single
!$omp end parallel

Fortran

end

The following two examples demonstrate how the scheduling rules illustrated in $ affect
the usage of threadprivate variables in tasks. A threadprivate variable can be
modified by another task that is executed by the same thread. Thus, the value of a
threadprivate variable cannot be assumed to be unchanged across a task
scheduling point. In untied tasks, task scheduling points may be added in any place by
the implementation.

A task switch may occur at a task scheduling point. A single thread may execute both of
the task regions that modify tp. The parts of these task regions in which tp is modified
may be executed in any order so the resulting value of var can be either 1 or 2.

C/C++
Example 16.7c

int tp;
#pragma omp threadprivate(tp)

OpenMP Examples 57

int var;
void work()
{
#pragma omp task
 {
 /* do work here */
#pragma omp task
 {
 tp = 1;
 /* do work here */
#pragma omp task
 {
 /* no modification of tp */
 }
 var = tp; //value of tp can be 1 or 2
 }
 tp = 2;
 }

C/C++
}

Fortran

Example 16.7f

module example
 integer tp
!$omp threadprivate(tp)
 integer var
 contains
 subroutine work
 use globals
!$omp task
 ! do work here
!$omp task
 tp = 1
 ! do work here
!$omp task
 ! no modification of tp
!$omp end task
 var = tp ! value of var can be 1 or 2
!$omp end task
 tp = 2
!$omp end task
 end subroutine

Fortran

 end module

In this example, scheduling constraints prohibit a thread in the team from executing a
new task that modifies tp while another such task region tied to the same thread is
suspended. Therefore, the value written will persist across the task scheduling point.

58 OpenMP API • Version 4.0.1 - February 2014

C/C++
Example 16.8c

int tp;
#pragma omp threadprivate(tp)
int var;
void work()
{
#pragma omp parallel
 {
 /* do work here */
#pragma omp task
 {
 tp++;
 /* do work here */
#pragma omp task
 {
 /* do work here but don't modify tp */
 }
 var = tp; //Value does not change after write above
 }
 }

C/C++
}

Fortran

Example 16.8f

module example
 integer tp
!$omp threadprivate(tp)
 integer var
 contains
 subroutine work
!$omp parallel
 ! do work here
!$omp task
 tp = tp + 1
 ! do work here
!$omp task
 ! do work here but don't modify tp
!$omp end task
 var = tp ! value does not change after write above
!$omp end task
!$omp end parallel
 end subroutine

Fortran

 end module

OpenMP Examples 59

The following two examples demonstrate how the scheduling rules illustrated in $ affect
the usage of locks and critical sections in tasks. If a lock is held across a task
scheduling point, no attempt should be made to acquire the same lock in any code that
may be interleaved. Otherwise, a deadlock is possible.

In the example below, suppose the thread executing task 1 defers task 2. When it
encounters the task scheduling point at task 3, it could suspend task 1 and begin task 2
which will result in a deadlock when it tries to enter critical region 1.

C/C++
Example 16.9c

void work()
{
 #pragma omp task
 { //Task 1
 #pragma omp task
 { //Task 2
 #pragma omp critical //Critical region 1
 {/*do work here */ }
 }
 #pragma omp critical //Critical Region 2
 {
 //Capture data for the following task
 #pragma omp task

{ /* do work here */ } //Task 3
 }
 }

C/C++
}

Fortran

Example 16.9f

module example
 contains
 subroutine work
!$omp task
 ! Task 1
!$omp task
 ! Task 2
!$omp critical
 ! Critical region 1
 ! do work here
!$omp end critical
!$omp end task
!$omp critical
 ! Critical region 2

60 OpenMP API • Version 4.0.1 - February 2014

 ! Capture data for the following task
!$omp task
 !Task 3
 ! do work here
!$omp end task
!$omp end critical
!$omp end task
 end subroutine

Fortran

 end module

OpenMP Examples 61

In the following example, lock is held across a task scheduling point. However,
according to the scheduling restrictions, the executing thread can't begin executing one
of the non-descendant tasks that also acquires lock before the task region is complete.
Therefore, no deadlock is possible.

C/C++
Example 16.10c

#include <omp.h>
void work() {
 omp_lock_t lock;

omp_init_lock(&lock);
#pragma omp parallel
 {
 int i;
#pragma omp for
 for (i = 0; i < 100; i++) {
#pragma omp task
 {

// lock is shared by default in the task
omp_set_lock(&lock);

 // Capture data for the following task
#pragma omp task

// Task Scheduling Point 1
 { /* do work here */ }
 omp_unset_lock(&lock);
 }
 }
 }

omp_destroy_lock(&lock);

C/C++
}

Fortran

Example 16.10f

 module example
 include 'omp_lib.h'
 integer (kind=omp_lock_kind) lock
 integer i
 contains
 subroutine work

call omp_init_lock(lock)
!$omp parallel
 !$omp do
 do i=1,100
 !$omp task
 ! Outer task

62 OpenMP API • Version 4.0.1 - February 2014

 call omp_set_lock(lock) ! lock is shared by
! default in the task

! Capture data for the following task
 !$omp task ! Task Scheduling Point 1
 ! do work here
 !$omp end task
 call omp_unset_lock(lock)
 !$omp end task
 end do
!$omp end parallel

call omp_destroy_lock(lock)
 end subroutine

Fortran

 end module

The following examples illustrate the use of the mergeable clause in the task
construct. In this first example, the task construct has been annotated with the
mergeable clause. The addition of this clause allows the implementation to reuse the
data environment (including the ICVs) of the parent task for the task inside foo if the
task is included or undeferred. Thus, the result of the execution may differ depending on
whether the task is merged or not. Therefore the mergeable clause needs to be used with
caution. In this example, the use of the mergeable clause is safe. As x is a shared
variable the outcome does not depend on whether or not the task is merged (that is, the
task will always increment the same variable and will always compute the same value
for x).

C/C++
Example 16.11c

#include <stdio.h>
void foo ()
{
 int x = 2;
 #pragma omp task shared(x) mergeable
 {
 x++;
 }
 #pragma omp taskwait
 printf("%d\n",x); // prints 3

C/C++
}

Fortran

Example 16.11f

subroutine foo()
 integer :: x

OpenMP Examples 63

 x = 2
!$omp task shared(x) mergeable
 x = x + 1
!$omp end task
!$omp taskwait
 print *, x ! prints 3

Fortran

end subroutine

This second example shows an incorrect use of the mergeable clause. In this
example, the created task will access different instances of the variable x if the task is
not merged, as x is firstprivate, but it will access the same variable x if the task
is merged. As a result, the behavior of the program is unspecified and it can print two
different values for x depending on the decisions taken by the implementation.

C/C++
Example 16.12c

#include <stdio.h>
void foo ()
{
 int x = 2;
 #pragma omp task mergeable
 {
 x++;
 }
 #pragma omp taskwait
 printf("%d\n",x); // prints 2 or 3
}

C/C++

Fortran

Example 16.12f

subroutine foo()
 integer :: x
 x = 2
!$omp task mergeable
 x = x + 1
!$omp end task
!$omp taskwait
 print *, x ! prints 2 or 3

Fortran

end subroutine

64 OpenMP API • Version 4.0.1 - February 2014

The following example shows the use of the final clause and the omp_in_final
API call in a recursive binary search program. To reduce overhead, once a certain depth
of recursion is reached the program uses the final clause to create only included tasks,
which allow additional optimizations.

The use of the omp_in_final API call allows programmers to optimize their code by
specifying which parts of the program are not necessary when a task can create only
included tasks (that is, the code is inside a final task). In this example, the use of a
different state variable is not necessary so once the program reaches the part of the
computation that is finalized and copying from the parent state to the new state is
eliminated. The allocation of new_state in the stack could also be avoided but it
would make this example less clear. The final clause is most effective when used in
conjunction with the mergeable clause since all tasks created in a final task region
are included tasks that can be merged if the mergeable clause is present.

C/C++
Example 16.13c

#include <string.h>
#include <omp.h>
#define LIMIT 3 /* arbitrary limit on recursion depth */
void check_solution(char *);
void bin_search (int pos, int n, char *state)
{
 if (pos == n) {
 check_solution(state);
 return;
 }
 #pragma omp task final(pos > LIMIT) mergeable
 {
 char new_state[n];
 if (!omp_in_final()) {
 memcpy(new_state, state, pos);
 state = new_state;
 }
 state[pos] = 0;
 bin_search(pos+1, n, state);
 }
 #pragma omp task final(pos > LIMIT) mergeable
 {
 char new_state[n];
 if (! omp_in_final()) {
 memcpy(new_state, state, pos);
 state = new_state;
 }
 state[pos] = 1;
 bin_search(pos+1, n, state);
 }
 #pragma omp taskwait

OpenMP Examples 65

C/C++
}

Fortran

Example 16.13f

recursive subroutine bin_search(pos, n, state)
 use omp_lib
 integer :: pos, n
 character, pointer :: state(:)
 character, target, dimension(n) :: new_state1, new_state2
 integer, parameter :: LIMIT = 3
 if (pos .eq. n) then
 call check_solution(state)
 return
 endif
!$omp task final(pos > LIMIT) mergeable
 if (.not. omp_in_final()) then
 new_state1(1:pos) = state(1:pos)
 state => new_state1
 endif
 state(pos+1) = 'z'
 call bin_search(pos+1, n, state)
!$omp end task
!$omp task final(pos > LIMIT) mergeable
 if (.not. omp_in_final()) then
 new_state2(1:pos) = state(1:pos)
 state => new_state2
 endif
 state(pos+1) = 'y'
 call bin_search(pos+1, n, state)
!$omp end task
!$omp taskwait

Fortran

end subroutine

The following example illustrates the difference between the if and the final
clauses. The if clause has a local effect. In the first nest of tasks, the one that has the
if clause will be undeferred but the task nested inside that task will not be affected by
the if clause and will be created as usual. Alternatively, the final clause affects all
task constructs in the final task region but not the final task itself. In the second
nest of tasks, the nested tasks will be created as included tasks. Note also that the
conditions for the if and final clauses are usually the opposite.

66 OpenMP API • Version 4.0.1 - February 2014

C/C++
Example 16.14c

void foo ()
{
 int i;
 #pragma omp task if(0) // This task is undeferred
 {
 #pragma omp task // This task is a regular task
 for (i = 0; i < 3; i++) {
 #pragma omp task // This task is a regular task
 bar();
 }
 }
 #pragma omp task final(1) // This task is a regular task
 {
 #pragma omp task // This task is included
 for (i = 0; i < 3; i++) {
 #pragma omp task // This task is also included
 bar();
 }
 }

C/C++
}

OpenMP Examples 67

Fortran

Example 16.14f

subroutine foo()
integer i
!$omp task if(.FALSE.) ! This task is undeferred
!$omp task ! This task is a regular task
 do i = 1, 3
 !$omp task ! This task is a regular task
 call bar()
 !$omp end task
 enddo
!$omp end task
!$omp end task
!$omp task final(.TRUE.) ! This task is a regular task
!$omp task ! This task is included
 do i = 1, 3
 !$omp task ! This task is also included
 call bar()
 !$omp end task
 enddo
!$omp end task
!$omp end task

Fortran

end subroutine

Task Dependences

Flow Dependence

In this example we show a simple flow dependence expressed using the depend clause
on the task construct.

C/C++
Example 16.15c

#include <stdio.h>
int main()
{
 int x = 1;
 #pragma omp parallel
 #pragma omp single
 {
 #pragma omp task shared(x) depend(out: x)
 x = 2;

68 OpenMP API • Version 4.0.1 - February 2014

 #pragma omp task shared(x) depend(in: x)
 printf("x = %d\n", x);
 }

C/C++
 return 0;

Fortran

Example 16.15f

program example
 integer :: x
 x = 1
 !$omp parallel
 !$omp single
 !$omp task shared(x) depend(out: x)
 x = 2
 !$omp end task
 !$omp task shared(x) depend(in: x)
 print*, "x = ", x
 !$omp end task
 !$omp end single
 !$omp end parallel

Fortran

end program

The program will always print "x = 2", because the depend clauses enforce the
ordering of the tasks. If the depend clauses had been omitted, then the tasks could
execute in any order and the program and the program would have a race condition.

Anti-dependence

In this example we show an anti-dependence expressed using the depend clause on the
task construct.

C/C++
Example 16.16c

#include <stdio.h>
int main()
{
 int x = 1;
 #pragma omp parallel
 #pragma omp single
 {
 #pragma omp task shared(x) depend(in: x)
 printf("x = %d\n", x);

OpenMP Examples 69

 #pragma omp task shared(x) depend(out: x)
 x = 2;
 }
 return 0;

C/C++
}

Fortran

Example 16.16f

program example
 integer :: x
 x = 1
 !$omp parallel
 !$omp single
 !$omp task shared(x) depend(in: x)
 print*, "x = ", x
 !$omp end task
 !$omp task shared(x) depend(out: x)
 x = 2
 !$omp end task
 !$omp end single
 !$omp end parallel

Fortran

end program

The program will always print "x = 1", because the depend clauses enforce the
ordering of the tasks. If the depend clauses had been omitted, then the tasks could
execute in any order and the program would have a race condition.

Output Dependence

In this example we show an output dependence expressed using the depend clause on
the task construct.

C/C++
Example 16.17c

#include <stdio.h>
int main()
{
 int x;
 #pragma omp parallel
 #pragma omp single
 {
 #pragma omp task shared(x) depend(out: x)

70 OpenMP API • Version 4.0.1 - February 2014

 x = 1;
 #pragma omp task shared(x) depend(out: x)
 x = 2;
 #pragma omp taskwait
 printf("x = %d\n", x);
 }
 return 0;

C/C++
}

Fortran

Example 16.17f

program example
 integer :: x
 !$omp parallel
 !$omp single
 !$omp task shared(x) depend(out: x)
 x = 1
 !$omp end task
 !$omp task shared(x) depend(out: x)
 x = 2
 !$omp end task
 !$omp taskwait
 print*, "x = ", x
 !$omp end single
 !$omp end parallel

Fortran

end program

The program will always print "x = 2", because the depend clauses enforce the
ordering of the tasks. If the depend clauses had been omitted, then the tasks could
execute in any order and the program would have a race condition.

Concurrent Execution with Dependences

In this example we show potentially concurrent execution of tasks using multiple flow
dependences expressed using the depend clause on the task construct.

C/C++
Example 16.18c

#include <stdio.h>
int main()
{
 int x = 1;

OpenMP Examples 71

 #pragma omp parallel
 #pragma omp single
 {
 #pragma omp task shared(x) depend(out: x)
 x = 2;
 #pragma omp task shared(x) depend(in: x)
 printf("x + 1 = %d. ", x+1);
 #pragma omp task shared(x) depend(in: x)
 printf("x + 2 = %d\n", x+2);
 }
 return 0;

C/C++
}

Fortran

Example 16.18f

program example
 integer :: x
 x = 1
 !$omp parallel
 !$omp single
 !$omp task shared(x) depend(out: x)
 x = 2
 !$omp end task
 !$omp task shared(x) depend(in: x)
 print*, "x + 1 = ", x+1, "."
 !$omp end task
 !$omp task shared(x) depend(in: x)
 print*, "x + 2 = ", x+2, "."
 !$omp end task
 !$omp end single
 !$omp end parallel

Fortran

end program

The last two tasks are dependent on the first task. However there is no dependence
between the last two tasks, which may execute in any order (or concurrently if more
than one thread is available). Thus, the possible outputs are "x + 1 = 3. x + 2 =
4. " and "x + 2 = 4. x + 1 = 3. ". If the depend clauses had been omitted,
then all of the tasks could execute in any order and the program would have a race
condition.

72 OpenMP API • Version 4.0.1 - February 2014

Matrix multiplication

This example shows a task-based blocked matrix multiplication. Matrices are of NxN
elements, and the multiplication is implemented using blocks of BSxBS elements.

C/C++
Example 16.19c

// Assume BS divides N perfectly
void matmul_depend(int N, int BS, float A[N][N], float B[N][N], float C[N][N])
{
 int i, j, k, ii, jj, kk;
 for (i = 0; i < N; i+=BS) {
 for (j = 0; j < N; j+=BS) {
 for (k = 0; k < N; k+=BS) {
#pragma omp task depend (in: A[i:BS][k:BS], B[k:BS][j:BS]) \
 depend (inout: C[i:BS][j:BS])
 for (ii = i; ii < i+BS; ii++)
 for (jj = j; jj < j+BS; jj++)
 for (kk = k; kk < k+BS; kk++)
 C[ii][jj] = C[ii][jj] + A[ii][kk] * B[kk][jj];
 }
 }
 }

C/C++
}

OpenMP Examples 73

Fortran

Example 16.19f

! Assume BS divides N perfectly
subroutine matmul_depend (N, BS, A, B, C)
 integer :: N, BS, BM
 real, dimension(N, N) :: A, B, C
 integer :: i, j, k, ii, jj, kk
 BM = BS -1
 do i = 1, N, BS
 do j = 1, N, BS
 do k = 1, N, BS
!$omp task depend (in: A(i:i+BM, k:k+BM), B(k:k+BM, j:j+BM)) &
!$omp depend (inout: C(i:i+BM, j:j+BM))
 do ii = i, i+BS
 do jj = j, j+BS
 do kk = k, k+BS
 C(jj,ii) = C(jj,ii) + A(kk,ii) * B(jj,kk)
 end do
 end do
 end do
!$omp end task
 end do
 end do
 end do

Fortran

end subroutine

74 OpenMP API • Version 4.0.1 - February 2014

17 The taskgroup Construct
In this example, tasks are grouped and synchronized using the taskgroup construct.

Initially, one task (the task executing the start_background_work() call) is created
in the parallel region, and later a parallel tree traversal is started (the task executing
the root of the recursive compute_tree() calls). While synchronizing tasks at the end
of each tree traversal, using the taskgroup construct ensures that the formerly started
background task does not participate in the synchronization, and is left free to execute in
parallel. This is opposed to the behaviour of the taskwait construct, which would
include the background tasks in the synchronization.

C/C++
Example 17.1c

extern void start_background_work(void);
extern void check_step(void);
extern void print_results(void);
struct tree_node
{
 struct tree_node *left;
 struct tree_node *right;
};
typedef struct tree_node* tree_type;
extern void init_tree(tree_type);
#define max_steps 100
void compute_something(tree_type tree)
{
 // some computation
}
void compute_tree(tree_type tree)
{
 if (tree->left)
 {
 #pragma omp task
 compute_tree(tree->left);
 }
 if (tree->right)
 {
 #pragma omp task
 compute_tree(tree->right);
 }
 #pragma omp task
 compute_something(tree);
}
int main()
{
 int i;

OpenMP Examples 75

 tree_type tree;
 init_tree(tree);
 #pragma omp parallel
 #pragma omp single
 {
 #pragma omp task
 start_background_work();
 for (i = 0; i < max_steps; i++)
 {
 #pragma omp taskgroup
 {
 #pragma omp task
 compute_tree(tree);
 } // wait on tree traversal in this step
 check_step();
 }
 } // only now is background work required to be complete
 print_results();

C/C++
}

Fortran

Example 17.1f

module tree_type_mod
 integer, parameter :: max_steps=100
 type tree_type
 type(tree_type), pointer :: left, right
 end type
 contains
 subroutine compute_something(tree)
 type(tree_type), pointer :: tree
! some computation
 end subroutine
 recursive subroutine compute_tree(tree)
 type(tree_type), pointer :: tree
 if (associated(tree%left)) then
!$omp task
 call compute_tree(tree%left)
!$omp end task
 endif
 if (associated(tree%right)) then
!$omp task
 call compute_tree(tree%right)
!$omp end task
 endif
!$omp task
 call compute_something(tree)
!$omp end task
 end subroutine

76 OpenMP API • Version 4.0.1 - February 2014

end module
program main
 use tree_type_mod
 type(tree_type), pointer :: tree
 call init_tree(tree);
!$omp parallel
!$omp single
!$omp task
 call start_background_work()
!$omp end task
 do i=1, max_steps
!$omp taskgroup
!$omp task
 call compute_tree(tree)
!$omp end task
!$omp end taskgroup ! wait on tree traversal in this step
 call check_step()
 enddo
!$omp end single
!$omp end parallel ! only now is background work required to be complete
 call print_results()

Fortran

end program

OpenMP Examples 77

18 The taskyield Directive
The following example illustrates the use of the taskyield directive. The tasks in the
example compute something useful and then do some computation that must be done in
a critical region. By using taskyield when a task cannot get access to the
critical region the implementation can suspend the current task and schedule some
other task that can do something useful.

C/C++
Example 18.1c

#include <omp.h>

void something_useful (void);
void something_critical (void);
void foo (omp_lock_t * lock, int n)
{
 int i;

 for (i = 0; i < n; i++)
 #pragma omp task
 {
 something_useful();
 while (!omp_test_lock(lock)) {
 #pragma omp taskyield
 }
 something_critical();
 omp_unset_lock(lock);
 }

C/C++
}

Fortran

Example 18.1f

subroutine foo (lock, n)
 use omp_lib
 integer (kind=omp_lock_kind) :: lock
 integer n
 integer i

 do i = 1, n
 !$omp task
 call something_useful()
 do while (.not. omp_test_lock(lock))

78 OpenMP API • Version 4.0.1 - February 2014

 !$omp taskyield
 end do
 call something_critical()
 call omp_unset_lock(lock)
 !$omp end task
 end do

Fortran

end subroutine

OpenMP Examples 79

Fortran

19 The workshare Construct
The following are examples of the workshare construct.

In the following example, workshare spreads work across the threads executing the
parallel region, and there is a barrier after the last statement. Implementations must
enforce Fortran execution rules inside of the workshare block.

Example 19.1f

 SUBROUTINE WSHARE1(AA, BB, CC, DD, EE, FF, N)
 INTEGER N
 REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N), EE(N,N), FF(N,N)

!$OMP PARALLEL
!$OMP WORKSHARE
 AA = BB
 CC = DD
 EE = FF
!$OMP END WORKSHARE
!$OMP END PARALLEL

 END SUBROUTINE WSHARE1

In the following example, the barrier at the end of the first workshare region is
eliminated with a nowait clause. Threads doing CC = DD immediately begin work on
EE = FF when they are done with CC = DD.

Fortran (cont.)

Example 19.2f

 SUBROUTINE WSHARE2(AA, BB, CC, DD, EE, FF, N)
 INTEGER N
 REAL AA(N,N), BB(N,N), CC(N,N)
 REAL DD(N,N), EE(N,N), FF(N,N)

!$OMP PARALLEL
!$OMP WORKSHARE
 AA = BB
 CC = DD
!$OMP END WORKSHARE NOWAIT
!$OMP WORKSHARE
 EE = FF
!$OMP END WORKSHARE
!$OMP END PARALLEL

END SUBROUTINE WSHARE2

80 OpenMP API • Version 4.0.1 - February 2014

The following example shows the use of an atomic directive inside a workshare
construct. The computation of SUM(AA) is workshared, but the update to R is atomic.

Example 19.3f

 SUBROUTINE WSHARE3(AA, BB, CC, DD, N)
 INTEGER N
 REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)
 REAL R
 R=0
!$OMP PARALLEL
!$OMP WORKSHARE
 AA = BB
!$OMP ATOMIC UPDATE
 R = R + SUM(AA)
 CC = DD
!$OMP END WORKSHARE
!$OMP END PARALLEL
 END SUBROUTINE WSHARE3

Fortran WHERE and FORALL statements are compound statements, made up of a control
part and a statement part. When workshare is applied to one of these compound
statements, both the control and the statement parts are workshared. The following
example shows the use of a WHERE statement in a workshare construct.

Each task gets worked on in order by the threads:
AA = BB then
CC = DD then
EE .ne. 0 then
FF = 1 / EE then
GG = HH

Fortran (cont.)

Example 19.4f

 SUBROUTINE WSHARE4(AA, BB, CC, DD, EE, FF, GG, HH, N)
 INTEGER N
 REAL AA(N,N), BB(N,N), CC(N,N)
 REAL DD(N,N), EE(N,N), FF(N,N)
 REAL GG(N,N), HH(N,N)

!$OMP PARALLEL
!$OMP WORKSHARE
 AA = BB
 CC = DD
 WHERE (EE .ne. 0) FF = 1 / EE
 GG = HH
!$OMP END WORKSHARE
!$OMP END PARALLEL

OpenMP Examples 81

 END SUBROUTINE WSHARE4

In the following example, an assignment to a shared scalar variable is performed by one
thread in a workshare while all other threads in the team wait.

Example 19.5f

 SUBROUTINE WSHARE5(AA, BB, CC, DD, N)
 INTEGER N
 REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)

 INTEGER SHR

!$OMP PARALLEL SHARED(SHR)
!$OMP WORKSHARE
 AA = BB
 SHR = 1
 CC = DD * SHR
!$OMP END WORKSHARE
!$OMP END PARALLEL

 END SUBROUTINE WSHARE5

The following example contains an assignment to a private scalar variable, which is
performed by one thread in a workshare while all other threads wait. It is non-
conforming because the private scalar variable is undefined after the assignment
statement.

Example 19.6f

 SUBROUTINE WSHARE6_WRONG(AA, BB, CC, DD, N)
 INTEGER N
 REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)

 INTEGER PRI

!$OMP PARALLEL PRIVATE(PRI)
!$OMP WORKSHARE
 AA = BB
 PRI = 1
 CC = DD * PRI
!$OMP END WORKSHARE
!$OMP END PARALLEL

 END SUBROUTINE WSHARE6_WRONG

82 OpenMP API • Version 4.0.1 - February 2014

Fortran execution rules must be enforced inside a workshare construct. In the
following example, the same result is produced in the following program fragment
regardless of whether the code is executed sequentially or inside an OpenMP program
with multiple threads:

Example 19.7f

 SUBROUTINE WSHARE7(AA, BB, CC, N)
 INTEGER N
 REAL AA(N), BB(N), CC(N)

!$OMP PARALLEL
!$OMP WORKSHARE
 AA(1:50) = BB(11:60)
 CC(11:20) = AA(1:10)
!$OMP END WORKSHARE
!$OMP END PARALLEL

Fortran

 END SUBROUTINE WSHARE7

OpenMP Examples 83

20 The master Construct
The following example demonstrates the master construct . In the example, the master
keeps track of how many iterations have been executed and prints out a progress report.
The other threads skip the master region without waiting.

C/C++
Example 20.1c

#include <stdio.h>

extern float average(float,float,float);

void master_example(float* x, float* xold, int n, float tol)
{
 int c, i, toobig;
 float error, y;
 c = 0;
 #pragma omp parallel
 {
 do{
 #pragma omp for private(i)
 for(i = 1; i < n-1; ++i){
 xold[i] = x[i];
 }
 #pragma omp single
 {
 toobig = 0;
 }
 #pragma omp for private(i,y,error) reduction(+:toobig)
 for(i = 1; i < n-1; ++i){
 y = x[i];
 x[i] = average(xold[i-1], x[i], xold[i+1]);
 error = y - x[i];
 if(error > tol || error < -tol) ++toobig;
 }
 #pragma omp master
 {
 ++c;
 printf("iteration %d, toobig=%d\n", c, toobig);
 }
 }while(toobig > 0);
 }

C/C++
}

84 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 20.1f

 SUBROUTINE MASTER_EXAMPLE(X, XOLD, N, TOL)
 REAL X(*), XOLD(*), TOL
 INTEGER N
 INTEGER C, I, TOOBIG
 REAL ERROR, Y, AVERAGE
 EXTERNAL AVERAGE
 C = 0
 TOOBIG = 1
!$OMP PARALLEL
 DO WHILE(TOOBIG > 0)
!$OMP DO PRIVATE(I)
 DO I = 2, N-1
 XOLD(I) = X(I)
 ENDDO
!$OMP SINGLE
 TOOBIG = 0
!$OMP END SINGLE
!$OMP DO PRIVATE(I,Y,ERROR), REDUCTION(+:TOOBIG)
 DO I = 2, N-1
 Y = X(I)
 X(I) = AVERAGE(XOLD(I-1), X(I), XOLD(I+1))
 ERROR = Y-X(I)
 IF(ERROR > TOL .OR. ERROR < -TOL) TOOBIG = TOOBIG+1
 ENDDO
!$OMP MASTER
 C = C + 1
 PRINT *, 'Iteration ', C, 'TOOBIG=', TOOBIG
!$OMP END MASTER
 ENDDO
!$OMP END PARALLEL

Fortran

 END SUBROUTINE MASTER_EXAMPLE

OpenMP Examples 85

21 The critical Construct
The following example includes several critical constructs . The example illustrates
a queuing model in which a task is dequeued and worked on. To guard against multiple
threads dequeuing the same task, the dequeuing operation must be in a critical
region. Because the two queues in this example are independent, they are protected by
critical constructs with different names, xaxis and yaxis.

C/C++
Example 21.1c

int dequeue(float *a);
void work(int i, float *a);

void critical_example(float *x, float *y)
{
 int ix_next, iy_next;

 #pragma omp parallel shared(x, y) private(ix_next, iy_next)
 {
 #pragma omp critical (xaxis)
 ix_next = dequeue(x);
 work(ix_next, x);

 #pragma omp critical (yaxis)
 iy_next = dequeue(y);
 work(iy_next, y);
 }

C/C++
}

Fortran

Example 21.1f

 SUBROUTINE CRITICAL_EXAMPLE(X, Y)

 REAL X(*), Y(*)
 INTEGER IX_NEXT, IY_NEXT

!$OMP PARALLEL SHARED(X, Y) PRIVATE(IX_NEXT, IY_NEXT)

!$OMP CRITICAL(XAXIS)
 CALL DEQUEUE(IX_NEXT, X)
!$OMP END CRITICAL(XAXIS)

86 OpenMP API • Version 4.0.1 - February 2014

 CALL WORK(IX_NEXT, X)

!$OMP CRITICAL(YAXIS)
 CALL DEQUEUE(IY_NEXT,Y)
!$OMP END CRITICAL(YAXIS)
 CALL WORK(IY_NEXT, Y)

!$OMP END PARALLEL

Fortran

 END SUBROUTINE CRITICAL_EXAMPLE

OpenMP Examples 87

22 Worksharing Constructs Inside a
critical Construct
The following example demonstrates using a worksharing construct inside a critical
construct. This example is conforming because the worksharing single region is not
closely nested inside the critical region. A single thread executes the one and only
section in the sections region, and executes the critical region. The same thread
encounters the nested parallel region, creates a new team of threads, and becomes
the master of the new team. One of the threads in the new team enters the single
region and increments i by 1. At the end of this example i is equal to 2.

C/C++
Example 22.1c

void critical_work()
{
 int i = 1;
 #pragma omp parallel sections
 {
 #pragma omp section
 {
 #pragma omp critical (name)
 {
 #pragma omp parallel
 {
 #pragma omp single
 {
 i++;
 }
 }
 }
 }
 }

C/C++
}

Fortran

Example 22.1f

 SUBROUTINE CRITICAL_WORK()

 INTEGER I
 I = 1

88 OpenMP API • Version 4.0.1 - February 2014

!$OMP PARALLEL SECTIONS
!$OMP SECTION
!$OMP CRITICAL (NAME)
!$OMP PARALLEL
!$OMP SINGLE
 I = I + 1
!$OMP END SINGLE
!$OMP END PARALLEL
!$OMP END CRITICAL (NAME)
!$OMP END PARALLEL SECTIONS

Fortran

 END SUBROUTINE CRITICAL_WORK

OpenMP Examples 89

23 Binding of barrier Regions
The binding rules call for a barrier region to bind to the closest enclosing
parallel region.

In the following example, the call from the main program to sub2 is conforming because
the barrier region (in sub3) binds to the parallel region in sub2. The call from
the main program to sub1 is conforming because the barrier region binds to the
parallel region in subroutine sub2.

The call from the main program to sub3 is conforming because the barrier region
binds to the implicit inactive parallel region enclosing the sequential part. Also note
that the barrier region in sub3 when called from sub2 only synchronizes the team of
threads in the enclosing parallel region and not all the threads created in sub1.

90 OpenMP API • Version 4.0.1 - February 2014

C/C++
Example 23.1c

void work(int n) {}

void sub3(int n)
{
 work(n);
 #pragma omp barrier
 work(n);
}

void sub2(int k)
{
 #pragma omp parallel shared(k)
 sub3(k);
}

void sub1(int n)
{
 int i;
 #pragma omp parallel private(i) shared(n)
 {
 #pragma omp for
 for (i=0; i<n; i++)
 sub2(i);
 }
}

int main()
{
 sub1(2);
 sub2(2);
 sub3(2);
 return 0;

C/C++
}

Fortran

Example 23.1f

 SUBROUTINE WORK(N)
 INTEGER N
 END SUBROUTINE WORK

 SUBROUTINE SUB3(N)
 INTEGER N
 CALL WORK(N)
!$OMP BARRIER
 CALL WORK(N)

OpenMP Examples 91

 END SUBROUTINE SUB3

 SUBROUTINE SUB2(K)
 INTEGER K
!$OMP PARALLEL SHARED(K)
 CALL SUB3(K)
!$OMP END PARALLEL
 END SUBROUTINE SUB2

 SUBROUTINE SUB1(N)
 INTEGER N
 INTEGER I
!$OMP PARALLEL PRIVATE(I) SHARED(N)
!$OMP DO
 DO I = 1, N
 CALL SUB2(I)
 END DO
!$OMP END PARALLEL
 END SUBROUTINE SUB1

 PROGRAM EXAMPLE
 CALL SUB1(2)
 CALL SUB2(2)
 CALL SUB3(2)

Fortran

 END PROGRAM EXAMPLE

92 OpenMP API • Version 4.0.1 - February 2014

24 The atomic Construct
The following example avoids race conditions (simultaneous updates of an element of x
by multiple threads) by using the atomic construct .

The advantage of using the atomic construct in this example is that it allows updates
of two different elements of x to occur in parallel. If a critical construct were used
instead, then all updates to elements of x would be executed serially (though not in any
guaranteed order).

Note that the atomic directive applies only to the statement immediately following it.
As a result, elements of y are not updated atomically in this example.

C/C++
Example 24.1c

float work1(int i)
{
 return 1.0 * i;
}

float work2(int i)
{
 return 2.0 * i;
}

void atomic_example(float *x, float *y, int *index, int n)
{
 int i;

 #pragma omp parallel for shared(x, y, index, n)
 for (i=0; i<n; i++) {
 #pragma omp atomic update
 x[index[i]] += work1(i);
 y[i] += work2(i);

}
}

int main()
{
 float x[1000];
 float y[10000];
 int index[10000];
 int i;

 for (i = 0; i < 10000; i++) {
 index[i] = i % 1000;
 y[i]=0.0;

OpenMP Examples 93

 }
 for (i = 0; i < 1000; i++)
 x[i] = 0.0;
 atomic_example(x, y, index, 10000);
 return 0;

C/C++
}

Fortran

Example 24.1f

 REAL FUNCTION WORK1(I)
 INTEGER I
 WORK1 = 1.0 * I
 RETURN
 END FUNCTION WORK1

 REAL FUNCTION WORK2(I)
 INTEGER I
 WORK2 = 2.0 * I
 RETURN
 END FUNCTION WORK2

 SUBROUTINE SUB(X, Y, INDEX, N)
 REAL X(*), Y(*)
 INTEGER INDEX(*), N

 INTEGER I

!$OMP PARALLEL DO SHARED(X, Y, INDEX, N)
 DO I=1,N
!$OMP ATOMIC UPDATE
 X(INDEX(I)) = X(INDEX(I)) + WORK1(I)
 Y(I) = Y(I) + WORK2(I)
 ENDDO

 END SUBROUTINE SUB

 PROGRAM ATOMIC_EXAMPLE
 REAL X(1000), Y(10000)
 INTEGER INDEX(10000)
 INTEGER I

 DO I=1,10000
 INDEX(I) = MOD(I, 1000) + 1
 Y(I) = 0.0
 ENDDO

 DO I = 1,1000
 X(I) = 0.0
 ENDDO

94 OpenMP API • Version 4.0.1 - February 2014

 CALL SUB(X, Y, INDEX, 10000)

Fortran

 END PROGRAM ATOMIC_EXAMPLE

The following example illustrates the read and write clauses for the atomic
directive. These clauses ensure that the given variable is read or written, respectively, as
a whole. Otherwise, some other thread might read or write part of the variable while the
current thread was reading or writing another part of the variable. Note that most
hardware provides atomic reads and writes for some set of properly aligned variables of
specific sizes, but not necessarily for all the variable types supported by the OpenMP
API.

C/C++
Example 24.2c

int atomic_read(const int *p)
{
 int value;
/* Guarantee that the entire value of *p is read atomically. No part of
 * *p can change during the read operation.
 */
#pragma omp atomic read
 value = *p;
 return value;
}

void atomic_write(int *p, int value)
{
/* Guarantee that value is stored atomically into *p. No part of *p can change
 * until after the entire write operation is completed.
 */
#pragma omp atomic write
 *p = value;

C/C++
}

Fortran

Example 24.2f

function atomic_read(p)
 integer :: atomic_read
 integer, intent(in) :: p
! Guarantee that the entire value of p is read atomically. No part of
! p can change during the read operation.

OpenMP Examples 95

!$omp atomic read
 atomic_read = p
 return
 end function atomic_read

 subroutine atomic_write(p, value)
 integer, intent(out) :: p
 integer, intent(in) :: value
! Guarantee that value is stored atomically into p. No part of p can change
! until after the entire write operation is completed.
!$omp atomic write
 p = value
 end subroutine atomic_write

Fortran

The following example illustrates the capture clause for the atomic directive. In
this case the value of a variable is captured, and then the variable is incremented. These
operations occur atomically. This particular example could be implemented using the
fetch-and-add instruction available on many kinds of hardware. The example also shows
a way to implement a spin lock using the capture and read clauses.

C/C++
Example 24.3c

int fetch_and_add(int *p)
{
/* Atomically read the value of *p and then increment it. The previous value is
 * returned. This can be used to implement a simple lock as shown below.
 */
 int old;
#pragma omp atomic capture
 { old = *p; (*p)++; }
 return old;
}

/*
 * Use fetch_and_add to implement a lock
 */
struct locktype {
 int ticketnumber;
 int turn;
};
void do_locked_work(struct locktype *lock)
{
 int atomic_read(const int *p);
 void work();

 // Obtain the lock
 int myturn = fetch_and_add(&lock->ticketnumber);

96 OpenMP API • Version 4.0.1 - February 2014

 while (atomic_read(&lock->turn) != myturn)
 ;
 // Do some work. The flush is needed to ensure visibility of
 // variables not involved in atomic directives

#pragma omp flush
 work();
#pragma omp flush
 // Release the lock
 fetch_and_add(&lock->turn);

C/C++
}

Fortran

Example 24.3f

function fetch_and_add(p)
 integer:: fetch_and_add
 integer, intent(inout) :: p

! Atomically read the value of p and then increment it. The previous value is
! returned. This can be used to implement a simple lock as shown below.
!$omp atomic capture
 fetch_and_add = p
 p = p + 1
!$omp end atomic
 end function fetch_and_add
! Use fetch_and_add to implement a lock
 module m
 interface
 function fetch_and_add(p)
 integer :: fetch_and_add
 integer, intent(inout) :: p
 end function
 function atomic_read(p)
 integer :: atomic_read
 integer, intent(in) :: p
 end function
 end interface
 type locktype
 integer ticketnumber
 integer turn
 end type
 contains
 subroutine do_locked_work(lock)
 type(locktype), intent(inout) :: lock
 integer myturn
 integer junk
! obtain the lock
 myturn = fetch_and_add(lock%ticketnumber)
 do while (atomic_read(lock%turn) .ne. myturn)

OpenMP Examples 97

 continue
 enddo
! Do some work. The flush is needed to ensure visibility of variables
! not involved in atomic directives
!$omp flush
 call work
!$omp flush
! Release the lock
 junk = fetch_and_add(lock%turn)
 end subroutine

Fortran

 end module

98 OpenMP API • Version 4.0.1 - February 2014

25 Restrictions on the atomic Construct
The following non-conforming examples illustrate the restrictions on the atomic
construct.

C/C++
Example 25.1c

void atomic_wrong ()
{
 union {int n; float x;} u;

#pragma omp parallel
 {
#pragma omp atomic update
 u.n++;

#pragma omp atomic update
 u.x += 1.0;

/* Incorrect because the atomic constructs reference the same location
 through incompatible types */
 }

C/C++
}

Fortran

Example 25.1f

 SUBROUTINE ATOMIC_WRONG()
 INTEGER:: I
 REAL:: R
 EQUIVALENCE(I,R)

!$OMP PARALLEL
!$OMP ATOMIC UPDATE
 I = I + 1
!$OMP ATOMIC UPDATE
 R = R + 1.0
! incorrect because I and R reference the same location
! but have different types
!$OMP END PARALLEL

Fortran

 END SUBROUTINE ATOMIC_WRONG

OpenMP Examples 99

C/C++
Example 25.2c

void atomic_wrong2 ()
{
 int x;
 int *i;
 float *r;

 i = &x;
 r = (float *)&x;

#pragma omp parallel
 {
#pragma omp atomic update
 *i += 1;

#pragma omp atomic update
 *r += 1.0;

/* Incorrect because the atomic constructs reference the same location
 through incompatible types */

 }

C/C++
}

100 OpenMP API • Version 4.0.1 - February 2014

Fortran

The following example is non-conforming because I and R reference the same location
but have different types.

Example 25.2f

 SUBROUTINE SUB()
 COMMON /BLK/ R
 REAL R

!$OMP ATOMIC UPDATE
 R = R + 1.0
 END SUBROUTINE SUB

 SUBROUTINE ATOMIC_WRONG2()
 COMMON /BLK/ I
 INTEGER I

!$OMP PARALLEL

!$OMP ATOMIC UPDATE
 I = I + 1
 CALL SUB()
!$OMP END PARALLEL
 END SUBROUTINE ATOMIC_WRONG2

Although the following example might work on some implementations, this is also non-
conforming:

Example 25.3f

 SUBROUTINE ATOMIC_WRONG3
 INTEGER:: I
 REAL:: R
 EQUIVALENCE(I,R)

!$OMP PARALLEL
!$OMP ATOMIC UPDATE
 I = I + 1
! incorrect because I and R reference the same location
! but have different types
!$OMP END PARALLEL

!$OMP PARALLEL
!$OMP ATOMIC UPDATE
 R = R + 1.0
! incorrect because I and R reference the same location
! but have different types
!$OMP END PARALLEL

OpenMP Examples 101

Fortran

 END SUBROUTINE ATOMIC_WRONG3

102 OpenMP API • Version 4.0.1 - February 2014

26 The flush Construct without a List
The following example distinguishes the shared variables affected by a flush construct
with no list from the shared objects that are not affected:

C/C++
Example 26.1c

int x, *p = &x;

void f1(int *q)
{
 *q = 1;
 #pragma omp flush
 /* x, p, and *q are flushed */
 /* because they are shared and accessible */
 /* q is not flushed because it is not shared. */
}

void f2(int *q)
{
 #pragma omp barrier
 *q = 2;
 #pragma omp barrier

 /* a barrier implies a flush */
 /* x, p, and *q are flushed */
 /* because they are shared and accessible */
 /* q is not flushed because it is not shared. */
}

int g(int n)
{
 int i = 1, j, sum = 0;
 *p = 1;
 #pragma omp parallel reduction(+: sum) num_threads(10)
 {
 f1(&j);

 /* i, n and sum were not flushed */
 /* because they were not accessible in f1 */
 /* j was flushed because it was accessible */
 sum += j;

 f2(&j);

 /* i, n, and sum were not flushed */
 /* because they were not accessible in f2 */
 /* j was flushed because it was accessible */

OpenMP Examples 103

 sum += i + j + *p + n;
 }
 return sum;
}

int main()
{
 int result = g(7);
 return result;

C/C++
}

Fortran

Example 26.1f

 SUBROUTINE F1(Q)
 COMMON /DATA/ X, P
 INTEGER, TARGET :: X
 INTEGER, POINTER :: P
 INTEGER Q

 Q = 1
!$OMP FLUSH
 ! X, P and Q are flushed
 ! because they are shared and accessible
 END SUBROUTINE F1

 SUBROUTINE F2(Q)
 COMMON /DATA/ X, P
 INTEGER, TARGET :: X
 INTEGER, POINTER :: P
 INTEGER Q

!$OMP BARRIER
 Q = 2
!$OMP BARRIER
 ! a barrier implies a flush
 ! X, P and Q are flushed
 ! because they are shared and accessible
 END SUBROUTINE F2

 INTEGER FUNCTION G(N)
 COMMON /DATA/ X, P
 INTEGER, TARGET :: X
 INTEGER, POINTER :: P
 INTEGER N
 INTEGER I, J, SUM

 I = 1
 SUM = 0
 P = 1

104 OpenMP API • Version 4.0.1 - February 2014

!$OMP PARALLEL REDUCTION(+: SUM) NUM_THREADS(10)
 CALL F1(J)
 ! I, N and SUM were not flushed
 ! because they were not accessible in F1
 ! J was flushed because it was accessible
 SUM = SUM + J

 CALL F2(J)
 ! I, N, and SUM were not flushed
 ! because they were not accessible in f2
 ! J was flushed because it was accessible
 SUM = SUM + I + J + P + N
!$OMP END PARALLEL

 G = SUM
 END FUNCTION G

 PROGRAM FLUSH_NOLIST
 COMMON /DATA/ X, P
 INTEGER, TARGET :: X
 INTEGER, POINTER :: P
 INTEGER RESULT, G

 P => X
 RESULT = G(7)
 PRINT *, RESULT

Fortran

 END PROGRAM FLUSH_NOLIST

OpenMP Examples 105

27 Placement of flush, barrier, taskwait
and taskyield Directives
The following example is non-conforming, because the flush, barrier, taskwait,
and taskyield directives are stand-alone directives and cannot be the immediate
substatement of an if statement.

C/C++
Example 27.1c

void standalone_wrong()
{
 int a = 1;

if (a != 0)
 #pragma omp flush(a)
/* incorrect as flush cannot be immediate substatement
 of if statement */

if (a != 0)
 #pragma omp barrier
/* incorrect as barrier cannot be immediate substatement
 of if statement */

if (a!=0)
 #pragma omp taskyield
/* incorrect as taskyield cannot be immediate substatement of if statement */

if (a != 0)
 #pragma omp taskwait
/* incorrect as taskwait cannot be immediate substatement
 of if statement */

}

C/C++

The following example is non-conforming, because the flush, barrier, taskwait,
and taskyield directives are stand-alone directives and cannot be the action
statement of an if statement or a labeled branch target.

106 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 27.1f

SUBROUTINE STANDALONE_WRONG()
 INTEGER A
 A = 1
 ! the FLUSH directive must not be the action statement
 ! in an IF statement
 IF (A .NE. 0) !$OMP FLUSH(A)

 ! the BARRIER directive must not be the action statement
 ! in an IF statement
 IF (A .NE. 0) !$OMP BARRIER

 ! the TASKWAIT directive must not be the action statement
 ! in an IF statement
 IF (A .NE. 0) !$OMP TASKWAIT

 ! the TASKYIELD directive must not be the action statement
 ! in an IF statement
 IF (A .NE. 0) !$OMP TASKYIELD

 GOTO 100

 ! the FLUSH directive must not be a labeled branch target
 ! statement
 100 !$OMP FLUSH(A)
 GOTO 200

 ! the BARRIER directive must not be a labeled branch target
 ! statement
 200 !$OMP BARRIER
 GOTO 300

 ! the TASKWAIT directive must not be a labeled branch target
 ! statement
 300 !$OMP TASKWAIT
 GOTO 400

 ! the TASKYIELD directive must not be a labeled branch target
 ! statement
 400 !$OMP TASKYIELD

Fortran

END SUBROUTINE

The following version of the above example is conforming because the flush,
barrier, taskwait, and taskyield directives are enclosed in a compound
statement.

OpenMP Examples 107

C/C++
Example 27.2c

void standalone_ok()
{
 int a = 1;

 #pragma omp parallel
 {
 if (a != 0) {
 #pragma omp flush(a)
 }
 if (a != 0) {
 #pragma omp barrier
 }

if (a != 0) {
 #pragma omp taskwait
 }
if (a != 0) {

 #pragma omp taskyield
}

 }

C/C++
}

The following example is conforming because the flush, barrier, taskwait, and
taskyield directives are enclosed in an if construct or follow the labeled branch
target.

Fortran

Example 27.2f

SUBROUTINE STANDALONE_OK()
 INTEGER A
 A = 1
 IF (A .NE. 0) THEN
 !$OMP FLUSH(A)
 ENDIF
 IF (A .NE. 0) THEN
 !$OMP BARRIER
 ENDIF
 IF (A .NE. 0) THEN
 !$OMP TASKWAIT
 ENDIF
 IF (A .NE. 0) THEN
 !$OMP TASKYIELD
 ENDIF
 GOTO 100
 100 CONTINUE

108 OpenMP API • Version 4.0.1 - February 2014

 !$OMP FLUSH(A)
 GOTO 200
 200 CONTINUE
 !$OMP BARRIER
 GOTO 300
 300 CONTINUE
 !$OMP TASKWAIT
 GOTO 400
 400 CONTINUE
 !$OMP TASKYIELD
END SUBROUTINE

Fortran

OpenMP Examples 109

28 The ordered Clause and the ordered
Construct
Ordered constructs are useful for sequentially ordering the output from work that is
done in parallel. The following program prints out the indices in sequential order:

C/C++
Example 28.1c

#include <stdio.h>

void work(int k)
{
 #pragma omp ordered
 printf(" %d\n", k);
}

void ordered_example(int lb, int ub, int stride)
{
 int i;

 #pragma omp parallel for ordered schedule(dynamic)
 for (i=lb; i<ub; i+=stride)
 work(i);
}

int main()
{
 ordered_example(0, 100, 5);
 return 0;

C/C++
}

Fortran

Example 28.1f

 SUBROUTINE WORK(K)
 INTEGER k

!$OMP ORDERED
 WRITE(*,*) K
!$OMP END ORDERED

 END SUBROUTINE WORK

110 OpenMP API • Version 4.0.1 - February 2014

 SUBROUTINE SUB(LB, UB, STRIDE)
 INTEGER LB, UB, STRIDE
 INTEGER I

!$OMP PARALLEL DO ORDERED SCHEDULE(DYNAMIC)
 DO I=LB,UB,STRIDE
 CALL WORK(I)
 END DO
!$OMP END PARALLEL DO

 END SUBROUTINE SUB

 PROGRAM ORDERED_EXAMPLE
 CALL SUB(1,100,5)

Fortran

 END PROGRAM ORDERED_EXAMPLE

It is possible to have multiple ordered constructs within a loop region with the
ordered clause specified. The first example is non-conforming because all iterations
execute two ordered regions. An iteration of a loop must not execute more than one
ordered region:

OpenMP Examples 111

C/C++
Example 28.2c

void work(int i) {}

void ordered_wrong(int n)
{
 int i;
 #pragma omp for ordered
 for (i=0; i<n; i++) {
/* incorrect because an iteration may not execute more than one
 ordered region */
 #pragma omp ordered
 work(i);
 #pragma omp ordered
 work(i+1);
 }

C/C++
}

Fortran

Example 28.2f

 SUBROUTINE WORK(I)
 INTEGER I
 END SUBROUTINE WORK

 SUBROUTINE ORDERED_WRONG(N)
 INTEGER N

 INTEGER I
!$OMP DO ORDERED
 DO I = 1, N
! incorrect because an iteration may not execute more than one
! ordered region
!$OMP ORDERED
 CALL WORK(I)
!$OMP END ORDERED

!$OMP ORDERED
 CALL WORK(I+1)
!$OMP END ORDERED
 END DO

Fortran

 END SUBROUTINE ORDERED_WRONG

The following is a conforming example with more than one ordered construct. Each
iteration will execute only one ordered region:

112 OpenMP API • Version 4.0.1 - February 2014

C/C++
Example 28.3c

void work(int i) {}
void ordered_good(int n)
{
 int i;
#pragma omp for ordered
 for (i=0; i<n; i++) {
 if (i <= 10) {
 #pragma omp ordered
 work(i);
 }
 if (i > 10) {
 #pragma omp ordered
 work(i+1);
 }
 }

C/C++
}

Fortran

Example 28.3f

 SUBROUTINE ORDERED_GOOD(N)
 INTEGER N

!$OMP DO ORDERED
 DO I = 1,N
 IF (I <= 10) THEN
!$OMP ORDERED
 CALL WORK(I)
!$OMP END ORDERED
 ENDIF

 IF (I > 10) THEN
!$OMP ORDERED
 CALL WORK(I+1)
!$OMP END ORDERED
 ENDIF
 ENDDO

Fortran

 END SUBROUTINE ORDERED_GOOD

OpenMP Examples 113

29 Cancellation Constructs

C/C++
Example 29.1c

The following example shows how the cancel directive can be used to terminate an
OpenMP region. Although the cancel construct terminates the OpenMP worksharing
region, programmers must still track the exception through the pointer ex and issue a
cancellation for the parallel region if an exception has been raised. The master
thread checks the exception pointer to make sure that the exception is properly handled
in the sequential part. If cancellation of the parallel region has been requested, some
threads might have executed phase_1(). However, it is guaranteed that none of the
threads executed phase_2().

void example() {
 std::exception *ex = NULL;
#pragma omp parallel shared(ex)
 {
#pragma omp for
 for (int i = 0; i < N; i++) {
 // no 'if' that prevents compiler optimizations
 try {
 causes_an_exception();
 }
 catch (const std::exception *e) {
 // still must remember exception for later handling
#pragma omp atomic write
 ex = e;

// cancel worksharing construct
#pragma omp cancel for
 }
 }

// if an exception has been raised, cancel parallel region
 if (ex) {
#pragma omp cancel parallel
 }
 phase_1();
#pragma omp barrier
 phase_2();
 }
 // continue here if an exception has been thrown in the worksharing loop
 if (ex) {
 // handle exception stored in ex
 }

C/C++
}

114 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 29.1f

The following example illustrates the use of the cancel construct in error handling. If
there is an error condition from the allocate statement, the cancellation is activated.
The encountering thread sets the shared variable err and other threads of the binding
thread set proceed to the end of the worksharing construct after the cancellation has
been activated.

subroutine example(n, dim)
 integer, intent(in) :: n, dim(n)
 integer :: i, s, err
 real, allocatable :: B(:)
 err = 0
!$omp parallel shared(err)
! ...
!$omp do private(s, B)
 do i=1, n
!$omp cancellation point
 allocate(B(dim(i)), stat=s)
 if (s .gt. 0) then
!$omp atomic write
 err = s
!$omp cancel do
 endif
! ...
! deallocate private array B
 if (allocated(B)) then
 deallocate(B)
 endif
 enddo
!$omp end parallel

Fortran

end subroutine

C/C++
Example 29.2c

The following example shows how to cancel a parallel search on a binary tree as soon as
the search value has been detected. The code creates a task to descend into the child
nodes of the current tree node. If the search value has been found, the code remembers
the tree node with the found value through an atomic write to the result variable and
then cancels execution of all search tasks. The function search_tree_parallel
groups all search tasks into a single task group to control the effect of the cancel
taskgroup directive. The level argument is used to create undeferred tasks after the
first ten levels of the tree.

OpenMP Examples 115

binary_tree_t *search_tree(binary_tree_t *tree, int value, int level) {
 binary_tree_t *found = NULL;
 if (tree) {
 if (tree->value == value) {
 found = tree;
 }
 else {
#pragma omp task shared(found) if(level < 10)
 {
 binary_tree_t *found_left = NULL;
 found_left = search_tree(tree->left, value, level + 1);
 if (found_left) {
#pragma omp atomic write
 found = found_left;
#pragma omp cancel taskgroup
 }
 }
#pragma omp task shared(found) if(level < 10)
 {
 binary_tree_t *found_right = NULL;
 found_right = search_tree(tree->right, value, level + 1);
 if (found_right) {
#pragma omp atomic write
 found = found_right;
#pragma omp cancel taskgroup
 }
 }
#pragma omp taskwait
 }
 }
 return found;
}
binary_tree_t *search_tree_parallel(binary_tree_t *tree, int value) {
 binary_tree_t *found = NULL;
#pragma omp parallel shared(found, tree, value)
 {
#pragma omp master
 {
#pragma omp taskgroup
 {
 found = search_tree(tree, value, 0);
 }
 }
 }
 return found;

C/C++
}

116 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 29.2f

The following is the equivalent parallel search example in Fortran.

module parallel_search
 type binary_tree
 integer :: value
 type(binary_tree), pointer :: right
 type(binary_tree), pointer :: left
 end type
!
contains
 recursive subroutine search_tree(tree, value, level, found)
 type(binary_tree), intent(in), pointer :: tree
 integer, intent(in) :: value, level
 type(binary_tree), pointer :: found
 type(binary_tree), pointer :: found_left => NULL(), found_right => NULL()
!
 if (.not. associated(found)) then
 allocate(found)
 endif
!
 if (associated(tree)) then
 if (tree%value .eq. value) then
 found = tree
 else
!$omp task shared(found) if(level<10)
 call search_tree(tree%left, value, level+1, found_left)
 if (associated(found_left)) then
!$omp atomic write
 found = found_left
!
!$omp cancel taskgroup
 endif
!$omp end task
!
!$omp task shared(found) if(level<10)
 call search_tree(tree%right, value, level+1, found_right)
 if (associated(found_right)) then
!$omp atomic write
 found = found_right
!
!$omp cancel taskgroup
 endif
!$omp end task
!
!$omp taskwait
 endif
 endif
 end subroutine
!

OpenMP Examples 117

 subroutine search_tree_parallel(tree, value, found)
 type(binary_tree), intent(in), pointer :: tree
 integer, intent(in) :: value
 type(binary_tree), pointer :: found
!
 if (associated(found)) then
 allocate(found)
 endif
!$omp parallel shared(found, tree, value)
!$omp master
!$omp taskgroup
 call search_tree(tree, value, 0, found)
!$omp end taskgroup
!$omp end master
!$omp end parallel
 end subroutine
!

Fortran

end module parallel_search

118 OpenMP API • Version 4.0.1 - February 2014

30 The threadprivate Directive
The following examples demonstrate how to use the threadprivate directive to
give each thread a separate counter.

C/C++
Example 30.1c

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{
 counter++;
 return(counter);

C/C++
}

Fortran

Example 30.1f

 INTEGER FUNCTION INCREMENT_COUNTER()
 COMMON/INC_COMMON/COUNTER
!$OMP THREADPRIVATE(/INC_COMMON/)

 COUNTER = COUNTER +1
 INCREMENT_COUNTER = COUNTER
 RETURN

Fortran

 END FUNCTION INCREMENT_COUNTER

C/C++
The following example uses threadprivate on a static variable:

Example 30.2c

int increment_counter_2()
{
 static int counter = 0;
 #pragma omp threadprivate(counter)
 counter++;
 return(counter);
}

OpenMP Examples 119

The following example demonstrates unspecified behavior for the initialization of a
threadprivate variable. A threadprivate variable is initialized once at an
unspecified point before its first reference. Because a is constructed using the value of x
(which is modified by the statement x++), the value of a.val at the start of the
parallel region could be either 1 or 2. This problem is avoided for b, which uses an
auxiliary const variable and a copy-constructor.

Example 30.3c

class T {
 public:
 int val;
 T (int);
 T (const T&);
};

T :: T (int v){
 val = v;
}

T :: T (const T& t) {
 val = t.val;
}

void g(T a, T b){
 a.val += b.val;
}

int x = 1;
T a(x);
const T b_aux(x); /* Capture value of x = 1 */
T b(b_aux);
#pragma omp threadprivate(a, b)

void f(int n) {
 x++;
 #pragma omp parallel for
 /* In each thread:
 * a is constructed from x (with value 1 or 2?)
 * b is copy-constructed from b_aux
 */

 for (int i=0; i<n; i++) {
 g(a, b); /* Value of a is unspecified. */
 }

C/C++
}

120 OpenMP API • Version 4.0.1 - February 2014

Fortran

The following examples show non-conforming uses and correct uses of the
threadprivate directive.

The following example is non-conforming because the common block is not declared
local to the subroutine that refers to it:

Example 30.2f

 MODULE INC_MODULE
 COMMON /T/ A
 END MODULE INC_MODULE

 SUBROUTINE INC_MODULE_WRONG()
 USE INC_MODULE
!$OMP THREADPRIVATE(/T/)
 !non-conforming because /T/ not declared in INC_MODULE_WRONG
 END SUBROUTINE INC_MODULE_WRONG

The following example is also non-conforming because the common block is not
declared local to the subroutine that refers to it:

Example 30.3f

 SUBROUTINE INC_WRONG()
 COMMON /T/ A
!$OMP THREADPRIVATE(/T/)

 CONTAINS
 SUBROUTINE INC_WRONG_SUB()
!$OMP PARALLEL COPYIN(/T/)
 !non-conforming because /T/ not declared in INC_WRONG_SUB
!$OMP END PARALLEL
 END SUBROUTINE INC_WRONG_SUB
 END SUBROUTINE INC_WRONG

OpenMP Examples 121

Fortran (cont.)

The following example is a correct rewrite of the previous example:

Example 30.4f

 SUBROUTINE INC_GOOD()
 COMMON /T/ A
!$OMP THREADPRIVATE(/T/)

 CONTAINS
 SUBROUTINE INC_GOOD_SUB()
 COMMON /T/ A
!$OMP THREADPRIVATE(/T/)

!$OMP PARALLEL COPYIN(/T/)
!$OMP END PARALLEL
 END SUBROUTINE INC_GOOD_SUB
 END SUBROUTINE INC_GOOD

The following is an example of the use of threadprivate for local variables:

Example 30.5f

 PROGRAM INC_GOOD2
 INTEGER, ALLOCATABLE, SAVE :: A(:)
 INTEGER, POINTER, SAVE :: PTR
 INTEGER, SAVE :: I
 INTEGER, TARGET :: TARG
 LOGICAL :: FIRSTIN = .TRUE.
!$OMP THREADPRIVATE(A, I, PTR)

 ALLOCATE (A(3))
 A = (/1,2,3/)
 PTR => TARG
 I = 5

!$OMP PARALLEL COPYIN(I, PTR)
!$OMP CRITICAL
 IF (FIRSTIN) THEN
 TARG = 4 ! Update target of ptr
 I = I + 10
 IF (ALLOCATED(A)) A = A + 10
 FIRSTIN = .FALSE.
 END IF

 IF (ALLOCATED(A)) THEN
 PRINT *, 'a = ', A
 ELSE

122 OpenMP API • Version 4.0.1 - February 2014

Fortran (cont.)

 PRINT *, 'A is not allocated'
 END IF

 PRINT *, 'ptr = ', PTR
 PRINT *, 'i = ', I
 PRINT *

!$OMP END CRITICAL
!$OMP END PARALLEL
 END PROGRAM INC_GOOD2

The above program, if executed by two threads, will print one of the following two sets
of output:

a = 11 12 13
ptr = 4
i = 15

A is not allocated
ptr = 4
i = 5

or

A is not allocated
ptr = 4
i = 15

a = 1 2 3
ptr = 4
i = 5

The following is an example of the use of threadprivate for module variables:

Example 30.6f

 MODULE INC_MODULE_GOOD3
 REAL, POINTER :: WORK(:)
 SAVE WORK
!$OMP THREADPRIVATE(WORK)
 END MODULE INC_MODULE_GOOD3

 SUBROUTINE SUB1(N)
 USE INC_MODULE_GOOD3
!$OMP PARALLEL PRIVATE(THE_SUM)
 ALLOCATE(WORK(N))

OpenMP Examples 123

 CALL SUB2(THE_SUM)
 WRITE(*,*)THE_SUM
!$OMP END PARALLEL
 END SUBROUTINE SUB1

 SUBROUTINE SUB2(THE_SUM)
 USE INC_MODULE_GOOD3
 WORK(:) = 10
 THE_SUM=SUM(WORK)
 END SUBROUTINE SUB2

 PROGRAM INC_GOOD3
 N = 10
 CALL SUB1(N)

Fortran

 END PROGRAM INC_GOOD3

C/C++
The following example illustrates initialization of threadprivate variables for
class-type T. t1 is default constructed, t2 is constructed taking a constructor accepting
one argument of integer type, t3 is copy constructed with argument f():

Example 30.4c

static T t1;
#pragma omp threadprivate(t1)
static T t2(23);
#pragma omp threadprivate(t2)
static T t3 = f();
#pragma omp threadprivate(t3)

The following example illustrates the use of threadprivate for static class
members. The threadprivate directive for a static class member must be placed
inside the class definition.

Example 30.5c

class T {
 public:
 static int i;
#pragma omp threadprivate(i)
};

C/C++

124 OpenMP API • Version 4.0.1 - February 2014

C/C++

31 Parallel Random Access Iterator Loop
The following example shows a parallel random access iterator loop.

Example 31.1c
#include <vector>
void iterator_example()
{
 std::vector<int> vec(23);
 std::vector<int>::iterator it;
#pragma omp parallel for default(none) shared(vec)
 for (it = vec.begin(); it < vec.end(); it++)
 {
 // do work with *it //
 }

C/C++
}

OpenMP Examples 125

Fortran

32 Fortran Restrictions on shared and
private Clauses with Common Blocks
When a named common block is specified in a private, firstprivate, or
lastprivate clause of a construct, none of its members may be declared in another
data-sharing attribute clause on that construct. The following examples illustrate this
point.

The following example is conforming:

Example 32.1f

 SUBROUTINE COMMON_GOOD()
 COMMON /C/ X,Y
 REAL X, Y

!$OMP PARALLEL PRIVATE (/C/)
 ! do work here
!$OMP END PARALLEL
!$OMP PARALLEL SHARED (X,Y)
 ! do work here
!$OMP END PARALLEL
 END SUBROUTINE COMMON_GOOD

The following example is also conforming:

Example 32.2f

 SUBROUTINE COMMON_GOOD2()
 COMMON /C/ X,Y
 REAL X, Y
 INTEGER I
!$OMP PARALLEL
!$OMP DO PRIVATE(/C/)
 DO I=1,1000
 ! do work here
 ENDDO
!$OMP END DO
!$OMP DO PRIVATE(X)
 DO I=1,1000
 ! do work here
 ENDDO
!$OMP END DO
!$OMP END PARALLEL
 END SUBROUTINE COMMON_GOOD2

126 OpenMP API • Version 4.0.1 - February 2014

The following example is conforming:

Example 32.3f

 SUBROUTINE COMMON_GOOD3()
 COMMON /C/ X,Y
!$OMP PARALLEL PRIVATE (/C/)
 ! do work here
!$OMP END PARALLEL
!$OMP PARALLEL SHARED (/C/)
 ! do work here
!$OMP END PARALLEL
 END SUBROUTINE COMMON_GOOD3

The following example is non-conforming because x is a constituent element of c:

Example 32.4f

 SUBROUTINE COMMON_WRONG()
 COMMON /C/ X,Y
! Incorrect because X is a constituent element of C
!$OMP PARALLEL PRIVATE(/C/), SHARED(X)
 ! do work here
!$OMP END PARALLEL
 END SUBROUTINE COMMON_WRONG

The following example is non-conforming because a common block may not be
declared both shared and private:

Example 32.5f

 SUBROUTINE COMMON_WRONG2()
 COMMON /C/ X,Y
! Incorrect: common block C cannot be declared both
! shared and private
!$OMP PARALLEL PRIVATE (/C/), SHARED(/C/)
 ! do work here
!$OMP END PARALLEL

Fortran

 END SUBROUTINE COMMON_WRONG2

OpenMP Examples 127

33 The default(none) Clause
The following example distinguishes the variables that are affected by the
default(none) clause from those that are not.

C/C++
Example 33.1c

#include <omp.h>
int x, y, z[1000];
#pragma omp threadprivate(x)

void default_none(int a) {
 const int c = 1;
 int i = 0;

 #pragma omp parallel default(none) private(a) shared(z)
 {
 int j = omp_get_num_threads();
 /* O.K. - j is declared within parallel region */
 a = z[j]; /* O.K. - a is listed in private clause */
 /* - z is listed in shared clause */
 x = c; /* O.K. - x is threadprivate */
 /* - c has const-qualified type */
 z[i] = y; /* Error - cannot reference i or y here */

#pragma omp for firstprivate(y)
/* Error - Cannot reference y in the firstprivate clause */

 for (i=0; i<10 ; i++) {
 z[i] = i; /* O.K. - i is the loop iteration variable */
 }

 z[i] = y; /* Error - cannot reference i or y here */
 }

C/C++
}

Fortran

Example 33.1f

 SUBROUTINE DEFAULT_NONE(A)
 INCLUDE "omp_lib.h" ! or USE OMP_LIB

 INTEGER A

128 OpenMP API • Version 4.0.1 - February 2014

 INTEGER X, Y, Z(1000)
 COMMON/BLOCKX/X
 COMMON/BLOCKY/Y
 COMMON/BLOCKZ/Z
!$OMP THREADPRIVATE(/BLOCKX/)

 INTEGER I, J
 i = 1

!$OMP PARALLEL DEFAULT(NONE) PRIVATE(A) SHARED(Z) PRIVATE(J)
 J = OMP_GET_NUM_THREADS();
 ! O.K. - J is listed in PRIVATE clause
 A = Z(J) ! O.K. - A is listed in PRIVATE clause
 ! - Z is listed in SHARED clause
 X = 1 ! O.K. - X is THREADPRIVATE
 Z(I) = Y ! Error - cannot reference I or Y here

!$OMP DO firstprivate(y)
! Error - Cannot reference y in the firstprivate clause

 DO I = 1,10
 Z(I) = I ! O.K. - I is the loop iteration variable
 END DO

 Z(I) = Y ! Error - cannot reference I or Y here
!$OMP END PARALLEL

Fortran

 END SUBROUTINE DEFAULT_NONE

OpenMP Examples 129

Fortran

34 Race Conditions Caused by Implied
Copies of Shared Variables in Fortran
The following example contains a race condition, because the shared variable, which is
an array section, is passed as an actual argument to a routine that has an assumed-size
array as its dummy argument. The subroutine call passing an array section argument
may cause the compiler to copy the argument into a temporary location prior to the call
and copy from the temporary location into the original variable when the subroutine
returns. This copying would cause races in the parallel region.

Example 34.1f

SUBROUTINE SHARED_RACE

 INCLUDE "omp_lib.h" ! or USE OMP_LIB

 REAL A(20)
 INTEGER MYTHREAD

!$OMP PARALLEL SHARED(A) PRIVATE(MYTHREAD)

 MYTHREAD = OMP_GET_THREAD_NUM()
 IF (MYTHREAD .EQ. 0) THEN
 CALL SUB(A(1:10)) ! compiler may introduce writes to A(6:10)
 ELSE
 A(6:10) = 12
 ENDIF

!$OMP END PARALLEL

END SUBROUTINE SHARED_RACE

SUBROUTINE SUB(X)
 REAL X(*)
 X(1:5) = 4

Fortran

END SUBROUTINE SUB

130 OpenMP API • Version 4.0.1 - February 2014

35 The private Clause
In the following example, the values of original list items i and j are retained on exit
from the parallel region, while the private list items i and j are modified within the
parallel construct.

C/C++
Example 35.1c

#include <stdio.h>
#include <assert.h>

int main()
{
 int i, j;

int *ptr_i, *ptr_j;

 i = 1;
 j = 2;

ptr_i = &i;
ptr_j = &j;

 #pragma omp parallel private(i) firstprivate(j)
 {
 i = 3;
 j = j + 2;

assert (*ptr_i == 1 && *ptr_j == 2);
 }

 assert(i == 1 && j == 2);

 return 0;

C/C++
}

Fortran

Example 35.1f

 PROGRAM PRIV_EXAMPLE
 INTEGER I, J

 I = 1
 J = 2

!$OMP PARALLEL PRIVATE(I) FIRSTPRIVATE(J)

OpenMP Examples 131

 I = 3
 J = J + 2
!$OMP END PARALLEL

 PRINT *, I, J ! I .eq. 1 .and. J .eq. 2

Fortran

 END PROGRAM PRIV_EXAMPLE

In the following example, all uses of the variable a within the loop construct in the
routine f refer to a private list item a, while it is unspecified whether references to a in
the routine g are to a private list item or the original list item.

C/C++
Example 35.2c

int a;

void g(int k) {
 a = k; /* Accessed in the region but outside of the construct;

* therefore unspecified whether original or private list
* item is modified. */

}

void f(int n) {
 int a = 0;

 #pragma omp parallel for private(a)
 for (int i=1; i<n; i++) {
 a = i;
 g(a*2); /* Private copy of "a" */
 }

C/C++
}

Fortran

Example 35.2f

 MODULE PRIV_EXAMPLE2
 REAL A

 CONTAINS

 SUBROUTINE G(K)
 REAL K
 A = K ! Accessed in the region but outside of the

! construct; therefore unspecified whether
! original or private list item is modified.

132 OpenMP API • Version 4.0.1 - February 2014

END SUBROUTINE G

 SUBROUTINE F(N)
 INTEGER N
 REAL A

 INTEGER I
!$OMP PARALLEL DO PRIVATE(A)
 DO I = 1,N
 A = I
 CALL G(A*2)
 ENDDO
!$OMP END PARALLEL DO
 END SUBROUTINE F

Fortran

 END MODULE PRIV_EXAMPLE2

The following example demonstrates that a list item that appears in a private clause
in a parallel construct may also appear in a private clause in an enclosed
worksharing construct, which results in an additional private copy.

OpenMP Examples 133

C/C++
Example 35.3c

#include <assert.h>
void priv_example3()
{
 int i, a;

 #pragma omp parallel private(a)
 {

a = 1;
 #pragma omp parallel for private(a)
 for (i=0; i<10; i++)
 {

a = 2;
 }

assert(a == 1);
 }

C/C++
}

Fortran

Example 35.3f

 SUBROUTINE PRIV_EXAMPLE3()
 INTEGER I, A

!$OMP PARALLEL PRIVATE(A)
A = 1

!$OMP PARALLEL DO PRIVATE(A)
 DO I = 1, 10
 A = 2
 END DO
!$OMP END PARALLEL DO

PRINT *, A ! Outer A still has value 1
!$OMP END PARALLEL

Fortran

 END SUBROUTINE PRIV_EXAMPLE3

134 OpenMP API • Version 4.0.1 - February 2014

Fortran

36 Fortran Restrictions on Storage
Association with the private Clause
The following non-conforming examples illustrate the implications of the private
clause rules with regard to storage association.

Example 36.1f

 SUBROUTINE SUB()
 COMMON /BLOCK/ X
 PRINT *,X ! X is undefined
 END SUBROUTINE SUB

 PROGRAM PRIV_RESTRICT
 COMMON /BLOCK/ X
 X = 1.0
!$OMP PARALLEL PRIVATE (X)
 X = 2.0
 CALL SUB()
!$OMP END PARALLEL
 END PROGRAM PRIV_RESTRICT

Example 36.2f

 PROGRAM PRIV_RESTRICT2
 COMMON /BLOCK2/ X
 X = 1.0

!$OMP PARALLEL PRIVATE (X)
 X = 2.0
 CALL SUB()
!$OMP END PARALLEL

 CONTAINS

 SUBROUTINE SUB()
 COMMON /BLOCK2/ Y

 PRINT *,X ! X is undefined
 PRINT *,Y ! Y is undefined
 END SUBROUTINE SUB

 END PROGRAM PRIV_RESTRICT2

OpenMP Examples 135

Fortran (cont.)

Example 36.3f

 PROGRAM PRIV_RESTRICT3
 EQUIVALENCE (X,Y)
 X = 1.0

!$OMP PARALLEL PRIVATE(X)
 PRINT *,Y ! Y is undefined
 Y = 10
 PRINT *,X ! X is undefined
!$OMP END PARALLEL
 END PROGRAM PRIV_RESTRICT3

Example 36.4f

 PROGRAM PRIV_RESTRICT4
 INTEGER I, J
 INTEGER A(100), B(100)
 EQUIVALENCE (A(51), B(1))

!$OMP PARALLEL DO DEFAULT(PRIVATE) PRIVATE(I,J) LASTPRIVATE(A)
 DO I=1,100
 DO J=1,100
 B(J) = J - 1
 ENDDO

 DO J=1,100
 A(J) = J ! B becomes undefined at this point
 ENDDO

 DO J=1,50
 B(J) = B(J) + 1 ! B is undefined
 ! A becomes undefined at this point
 ENDDO
 ENDDO
!$OMP END PARALLEL DO ! The LASTPRIVATE write for A has
 ! undefined results

 PRINT *, B ! B is undefined since the LASTPRIVATE
 ! write of A was not defined
 END PROGRAM PRIV_RESTRICT4

136 OpenMP API • Version 4.0.1 - February 2014

Example 36.5f

 SUBROUTINE SUB1(X)
 DIMENSION X(10)

 ! This use of X does not conform to the
 ! specification. It would be legal Fortran 90,
 ! but the OpenMP private directive allows the
 ! compiler to break the sequence association that
 ! A had with the rest of the common block.

 FORALL (I = 1:10) X(I) = I
 END SUBROUTINE SUB1

 PROGRAM PRIV_RESTRICT5
 COMMON /BLOCK5/ A

 DIMENSION B(10)
 EQUIVALENCE (A,B(1))

 ! the common block has to be at least 10 words
 A = 0

!$OMP PARALLEL PRIVATE(/BLOCK5/)

 ! Without the private clause,
 ! we would be passing a member of a sequence
 ! that is at least ten elements long.
 ! With the private clause, A may no longer be
 ! sequence-associated.

 CALL SUB1(A)
!$OMP MASTER
 PRINT *, A
!$OMP END MASTER

!$OMP END PARALLEL

Fortran

 END PROGRAM PRIV_RESTRICT5

OpenMP Examples 137

C/C++

37 C/C++ Arrays in a firstprivate Clause
The following example illustrates the size and value of list items of array or pointer type
in a firstprivate clause . The size of new list items is based on the type of the
corresponding original list item, as determined by the base language.

In this example:

• The type of A is array of two arrays of two ints.

• The type of B is adjusted to pointer to array of n ints, because it is a function parameter.

• The type of C is adjusted to pointer to int, because it is a function parameter.

• The type of D is array of two arrays of two ints.

• The type of E is array of n arrays of n ints.

Note that B and E involve variable length array types.

The new items of array type are initialized as if each integer element of the original
array is assigned to the corresponding element of the new array. Those of pointer type
are initialized as if by assignment from the original item to the new item.

138 OpenMP API • Version 4.0.1 - February 2014

Example 37.1c

#include <assert.h>

int A[2][2] = {1, 2, 3, 4};

void f(int n, int B[n][n], int C[])
{
 int D[2][2] = {1, 2, 3, 4};
 int E[n][n];

 assert(n >= 2);
 E[1][1] = 4;

 #pragma omp parallel firstprivate(B, C, D, E)
 {
 assert(sizeof(B) == sizeof(int (*)[n]));
 assert(sizeof(C) == sizeof(int*));
 assert(sizeof(D) == 4 * sizeof(int));
 assert(sizeof(E) == n * n * sizeof(int));

 /* Private B and C have values of original B and C. */
 assert(&B[1][1] == &A[1][1]);
 assert(&C[3] == &A[1][1]);
 assert(D[1][1] == 4);
 assert(E[1][1] == 4);
 }
}

int main() {
 f(2, A, A[0]);
 return 0;

C/C++
}

OpenMP Examples 139

38 The lastprivate Clause
Correct execution sometimes depends on the value that the last iteration of a loop
assigns to a variable. Such programs must list all such variables in a lastprivate
clause so that the values of the variables are the same as when the loop is executed
sequentially.

C/C++
Example 38.1c

void lastpriv (int n, float *a, float *b)
{
 int i;

 #pragma omp parallel
 {
 #pragma omp for lastprivate(i)
 for (i=0; i<n-1; i++)
 a[i] = b[i] + b[i+1];
 }

 a[i]=b[i]; /* i == n-1 here */

C/C++
}

Fortran

Example 38.1f

 SUBROUTINE LASTPRIV(N, A, B)

 INTEGER N
 REAL A(*), B(*)
 INTEGER I
!$OMP PARALLEL
!$OMP DO LASTPRIVATE(I)

 DO I=1,N-1
 A(I) = B(I) + B(I+1)
 ENDDO

!$OMP END PARALLEL
 A(I) = B(I) ! I has the value of N here

Fortran

 END SUBROUTINE LASTPRIV

140 OpenMP API • Version 4.0.1 - February 2014

39 The reduction Clause
The following example demonstrates the reduction clause ; note that some
reductions can be expressed in the loop in several ways, as shown for the max and min
reductions below:

C/C++
Example 39.1c

#include <math.h>
void reduction1(float *x, int *y, int n)
{
 int i, b, c;
 float a, d;
 a = 0.0;
 b = 0;
 c = y[0];
 d = x[0];
 #pragma omp parallel for private(i) shared(x, y, n) \
 reduction(+:a) reduction(^:b) \
 reduction(min:c) reduction(max:d)
 for (i=0; i<n; i++) {
 a += x[i];
 b ^= y[i];
 if (c > y[i]) c = y[i];
 d = fmaxf(d,x[i]);
 }

C/C++
}

Fortran

Example 39.1f

SUBROUTINE REDUCTION1(A, B, C, D, X, Y, N)
 REAL :: X(*), A, D
 INTEGER :: Y(*), N, B, C
 INTEGER :: I
 A = 0
 B = 0
 C = Y(1)
 D = X(1)
 !$OMP PARALLEL DO PRIVATE(I) SHARED(X, Y, N) REDUCTION(+:A) &
 !$OMP& REDUCTION(IEOR:B) REDUCTION(MIN:C) REDUCTION(MAX:D)
 DO I=1,N
 A = A + X(I)
 B = IEOR(B, Y(I))

OpenMP Examples 141

 C = MIN(C, Y(I))
 IF (D < X(I)) D = X(I)
 END DO

Fortran

END SUBROUTINE REDUCTION1

A common implementation of the preceding example is to treat it as if it had been
written as follows:

C/C++
Example 39.2c

#include <limits.h>
#include <math.h>
void reduction2(float *x, int *y, int n)
{
 int i, b, b_p, c, c_p;
 float a, a_p, d, d_p;
 a = 0.0f;
 b = 0;
 c = y[0];
 d = x[0];
 #pragma omp parallel shared(a, b, c, d, x, y, n) \
 private(a_p, b_p, c_p, d_p)
 {
 a_p = 0.0f;
 b_p = 0;
 c_p = INT_MAX;
 d_p = -HUGE_VALF;
 #pragma omp for private(i)
 for (i=0; i<n; i++) {
 a_p += x[i];
 b_p ^= y[i];
 if (c_p > y[i]) c_p = y[i];
 d_p = fmaxf(d_p,x[i]);
 }
 #pragma omp critical
 {
 a += a_p;
 b ^= b_p;
 if(c > c_p) c = c_p;
 d = fmaxf(d,d_p);
 }
 }

C/C++
}

142 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 39.2f

SUBROUTINE REDUCTION2(A, B, C, D, X, Y, N)
 REAL :: X(*), A, D
 INTEGER :: Y(*), N, B, C
 REAL :: A_P, D_P
 INTEGER :: I, B_P, C_P
 A = 0
 B = 0
 C = Y(1)
 D = X(1)
 !$OMP PARALLEL SHARED(X, Y, A, B, C, D, N) &
 !$OMP& PRIVATE(A_P, B_P, C_P, D_P)
 A_P = 0.0
 B_P = 0
 C_P = HUGE(C_P)
 D_P = -HUGE(D_P)
 !$OMP DO PRIVATE(I)
 DO I=1,N
 A_P = A_P + X(I)
 B_P = IEOR(B_P, Y(I))
 C_P = MIN(C_P, Y(I))
 IF (D_P < X(I)) D_P = X(I)
 END DO
 !$OMP CRITICAL
 A = A + A_P
 B = IEOR(B, B_P)
 C = MIN(C, C_P)
 D = MAX(D, D_P)
 !$OMP END CRITICAL
 !$OMP END PARALLEL

END SUBROUTINE REDUCTION2

The following program is non-conforming because the reduction is on the intrinsic
procedure name MAX but that name has been redefined to be the variable named MAX.

Fortran (cont.)

Example 39.3f

 PROGRAM REDUCTION_WRONG
 MAX = HUGE(0)
 M = 0

 !$OMP PARALLEL DO REDUCTION(MAX: M)
! MAX is no longer the intrinsic so this is non-conforming
 DO I = 1, 100
 CALL SUB(M,I)

OpenMP Examples 143

 END DO

 END PROGRAM REDUCTION_WRONG

 SUBROUTINE SUB(M,I)
 M = MAX(M,I)
 END SUBROUTINE SUB

The following conforming program performs the reduction using the intrinsic procedure
name MAX even though the intrinsic MAX has been renamed to REN.

Example 39.4f

MODULE M
 INTRINSIC MAX
END MODULE M

PROGRAM REDUCTION3
 USE M, REN => MAX
 N = 0
!$OMP PARALLEL DO REDUCTION(REN: N) ! still does MAX
 DO I = 1, 100
 N = MAX(N,I)
 END DO
END PROGRAM REDUCTION3

The following conforming program performs the reduction using intrinsic procedure
name MAX even though the intrinsic MAX has been renamed to MIN.

Example 39.5f

MODULE MOD
 INTRINSIC MAX, MIN
END MODULE MOD

PROGRAM REDUCTION4
 USE MOD, MIN=>MAX, MAX=>MIN
 REAL :: R
 R = -HUGE(0.0)

!$OMP PARALLEL DO REDUCTION(MIN: R) ! still does MAX
 DO I = 1, 1000
 R = MIN(R, SIN(REAL(I)))
 END DO
 PRINT *, R

Fortran

END PROGRAM REDUCTION4

144 OpenMP API • Version 4.0.1 - February 2014

The following example is non-conforming because the initialization (a = 0) of the
original list item a is not synchronized with the update of a as a result of the reduction
computation in the for loop. Therefore, the example may print an incorrect value for a.

To avoid this problem, the initialization of the original list item a should complete
before any update of a as a result of the reduction clause. This can be achieved by
adding an explicit barrier after the assignment a = 0, or by enclosing the assignment
a = 0 in a single directive (which has an implied barrier), or by initializing a before
the start of the parallel region.

C/C++
Example 39.3c

#include <stdio.h>

int main (void)
{
 int a, i;

 #pragma omp parallel shared(a) private(i)
 {
 #pragma omp master
 a = 0;

 // To avoid race conditions, add a barrier here.

 #pragma omp for reduction(+:a)
 for (i = 0; i < 10; i++) {
 a += i;
 }

 #pragma omp single
 printf ("Sum is %d\n", a);
 }

C/C++
}

Fortran

Example 39.6f

INTEGER A, I

!$OMP PARALLEL SHARED(A) PRIVATE(I)

!$OMP MASTER
 A = 0

OpenMP Examples 145

!$OMP END MASTER

 ! To avoid race conditions, add a barrier here.

!$OMP DO REDUCTION(+:A)
 DO I= 0, 9
 A = A + I
 END DO

!$OMP SINGLE
 PRINT *, "Sum is ", A
!$OMP END SINGLE

!$OMP END PARALLEL

Fortran

 END

146 OpenMP API • Version 4.0.1 - February 2014

40 The copyin Clause
The copyin clause is used to initialize threadprivate data upon entry to a parallel
region. The value of the threadprivate variable in the master thread is copied to the
threadprivate variable of each other team member.

C/C++
Example 40.1c

#include <stdlib.h>

float* work;
int size;
float tol;

#pragma omp threadprivate(work,size,tol)

void build()
{
 int i;
 work = (float*)malloc(sizeof(float)*size);
 for(i = 0; i < size; ++i) work[i] = tol;
}

void copyin_example(float t, int n)
{
 tol = t;
 size = n;
 #pragma omp parallel copyin(tol,size)
 {
 build();
 }
}

C/C++

Fortran

Example 40.1f

 MODULE M
 REAL, POINTER, SAVE :: WORK(:)
 INTEGER :: SIZE
 REAL :: TOL
!$OMP THREADPRIVATE(WORK,SIZE,TOL)
 END MODULE M

OpenMP Examples 147

 SUBROUTINE COPYIN_EXAMPLE(T, N)
 USE M
 REAL :: T
 INTEGER :: N
 TOL = T
 SIZE = N
!$OMP PARALLEL COPYIN(TOL,SIZE)
 CALL BUILD
!$OMP END PARALLEL
 END SUBROUTINE COPYIN_EXAMPLE

 SUBROUTINE BUILD
 USE M
 ALLOCATE(WORK(SIZE))
 WORK = TOL

Fortran

 END SUBROUTINE BUILD

148 OpenMP API • Version 4.0.1 - February 2014

41 The copyprivate Clause
The copyprivate clause can be used to broadcast values acquired by a single thread
directly to all instances of the private variables in the other threads. In this example, if
the routine is called from the sequential part, its behavior is not affected by the presence
of the directives. If it is called from a parallel region, then the actual arguments with
which a and b are associated must be private.

The thread that executes the structured block associated with the single construct
broadcasts the values of the private variables a, b, x, and y from its implicit task's
data environment to the data environments of the other implicit tasks in the thread team.
The broadcast completes before any of the threads have left the barrier at the end of the
construct.

C/C++
Example 41.1c

#include <stdio.h>
float x, y;
#pragma omp threadprivate(x, y)

void init(float a, float b) {
 #pragma omp single copyprivate(a,b,x,y)
 {
 scanf("%f %f %f %f", &a, &b, &x, &y);
 }

C/C++
}

Fortran

Example 41.1f

 SUBROUTINE INIT(A,B)
 REAL A, B
 COMMON /XY/ X,Y
!$OMP THREADPRIVATE (/XY/)

!$OMP SINGLE
 READ (11) A,B,X,Y
!$OMP END SINGLE COPYPRIVATE (A,B,/XY/)

Fortran

 END SUBROUTINE INIT

OpenMP Examples 149

In this example, assume that the input must be performed by the master thread. Since the
master construct does not support the copyprivate clause, it cannot broadcast the
input value that is read. However, copyprivate is used to broadcast an address where
the input value is stored.

C/C++
Example 41.2c

#include <stdio.h>
#include <stdlib.h>

float read_next() {
 float * tmp;
 float return_val;

 #pragma omp single copyprivate(tmp)
 {
 tmp = (float *) malloc(sizeof(float));
 } /* copies the pointer only */

 #pragma omp master
 {
 scanf("%f", tmp);
 }

 #pragma omp barrier
 return_val = *tmp;
 #pragma omp barrier

 #pragma omp single nowait
 {
 free(tmp);
 }

 return return_val;

C/C++
}

Fortran

Example 41.2f

 REAL FUNCTION READ_NEXT()
 REAL, POINTER :: TMP

!$OMP SINGLE
 ALLOCATE (TMP)
!$OMP END SINGLE COPYPRIVATE (TMP) ! copies the pointer only

150 OpenMP API • Version 4.0.1 - February 2014

!$OMP MASTER
 READ (11) TMP
!$OMP END MASTER

!$OMP BARRIER
 READ_NEXT = TMP
!$OMP BARRIER

!$OMP SINGLE
 DEALLOCATE (TMP)
!$OMP END SINGLE NOWAIT

Fortran

 END FUNCTION READ_NEXT

Suppose that the number of lock variables required within a parallel region cannot
easily be determined prior to entering it. The copyprivate clause can be used to
provide access to shared lock variables that are allocated within that parallel region.

C/C++
Example 41.3c

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

omp_lock_t *new_lock()
{
 omp_lock_t *lock_ptr;

 #pragma omp single copyprivate(lock_ptr)
 {
 lock_ptr = (omp_lock_t *) malloc(sizeof(omp_lock_t));
 omp_init_lock(lock_ptr);
 }

 return lock_ptr;

C/C++
}

Fortran

Example 41.3f

 FUNCTION NEW_LOCK()
 USE OMP_LIB ! or INCLUDE "omp_lib.h"
 INTEGER(OMP_LOCK_KIND), POINTER :: NEW_LOCK

!$OMP SINGLE

OpenMP Examples 151

 ALLOCATE(NEW_LOCK)
 CALL OMP_INIT_LOCK(NEW_LOCK)
!$OMP END SINGLE COPYPRIVATE(NEW_LOCK)
 END FUNCTION NEW_LOCK

Note that the effect of the copyprivate clause on a variable with the allocatable
attribute is different than on a variable with the pointer attribute. The value of A is
copied (as if by intrinsic assignment) and the pointer B is copied (as if by pointer
assignment) to the corresponding list items in the other implicit tasks belonging to the
parallel region.

Example 41.4f

 SUBROUTINE S(N)
 INTEGER N

 REAL, DIMENSION(:), ALLOCATABLE :: A
 REAL, DIMENSION(:), POINTER :: B

 ALLOCATE (A(N))
!$OMP SINGLE
 ALLOCATE (B(N))
 READ (11) A,B
!$OMP END SINGLE COPYPRIVATE(A,B)
 ! Variable A is private and is
 ! assigned the same value in each thread

! Variable B is shared

!$OMP BARRIER
!$OMP SINGLE
 DEALLOCATE (B)
!$OMP END SINGLE NOWAIT

Fortran

 END SUBROUTINE S

152 OpenMP API • Version 4.0.1 - February 2014

42 Nested Loop Constructs
The following example of loop construct nesting is conforming because the inner and
outer loop regions bind to different parallel regions:

C/C++
Example 42.1c

void work(int i, int j) {}

void good_nesting(int n)
{
 int i, j;
 #pragma omp parallel default(shared)
 {
 #pragma omp for
 for (i=0; i<n; i++) {
 #pragma omp parallel shared(i, n)
 {
 #pragma omp for
 for (j=0; j < n; j++)
 work(i, j);
 }
 }
 }

C/C++
}

Fortran

Example 42.1f

 SUBROUTINE WORK(I, J)
 INTEGER I, J
 END SUBROUTINE WORK

 SUBROUTINE GOOD_NESTING(N)
 INTEGER N

 INTEGER I
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
 DO I = 1, N
!$OMP PARALLEL SHARED(I,N)
!$OMP DO
 DO J = 1, N
 CALL WORK(I,J)

OpenMP Examples 153

 END DO
!$OMP END PARALLEL
 END DO
!$OMP END PARALLEL

Fortran

 END SUBROUTINE GOOD_NESTING

154 OpenMP API • Version 4.0.1 - February 2014

The following variation of the preceding example is also conforming:

C/C++
Example 42.2c

void work(int i, int j) {}

void work1(int i, int n)
{
 int j;
 #pragma omp parallel default(shared)
 {
 #pragma omp for
 for (j=0; j<n; j++)
 work(i, j);
 }
}

void good_nesting2(int n)
{
 int i;
 #pragma omp parallel default(shared)
 {
 #pragma omp for
 for (i=0; i<n; i++)
 work1(i, n);
 }

C/C++
}

Fortran

Example 42.2f

 SUBROUTINE WORK(I, J)
 INTEGER I, J
 END SUBROUTINE WORK

 SUBROUTINE WORK1(I, N)
 INTEGER J
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
 DO J = 1, N
 CALL WORK(I,J)
 END DO
!$OMP END PARALLEL
 END SUBROUTINE WORK1

OpenMP Examples 155

 SUBROUTINE GOOD_NESTING2(N)
 INTEGER N
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
 DO I = 1, N
 CALL WORK1(I, N)
 END DO
!$OMP END PARALLEL

Fortran

 END SUBROUTINE GOOD_NESTING2

156 OpenMP API • Version 4.0.1 - February 2014

43 Restrictions on Nesting of Regions
The examples in this section illustrate the region nesting rules.

The following example is non-conforming because the inner and outer loop regions are
closely nested:

C/C++
Example 43.1c

void work(int i, int j) {}
void wrong1(int n)
{
 #pragma omp parallel default(shared)
 {
 int i, j;
 #pragma omp for
 for (i=0; i<n; i++) {
 /* incorrect nesting of loop regions */
 #pragma omp for
 for (j=0; j<n; j++)
 work(i, j);
 }
 }

C/C++
}

Fortran

Example 43.1f

 SUBROUTINE WORK(I, J)
 INTEGER I, J
 END SUBROUTINE WORK
 SUBROUTINE WRONG1(N)
 INTEGER N
 INTEGER I,J
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
 DO I = 1, N
!$OMP DO ! incorrect nesting of loop regions
 DO J = 1, N
 CALL WORK(I,J)
 END DO
 END DO
!$OMP END PARALLEL

OpenMP Examples 157

Fortran

 END SUBROUTINE WRONG1

The following orphaned version of the preceding example is also non-conforming:

C/C++
Example 43.2c

void work(int i, int j) {}
void work1(int i, int n)
{
 int j;
/* incorrect nesting of loop regions */
 #pragma omp for
 for (j=0; j<n; j++)
 work(i, j);
}

void wrong2(int n)
{
 #pragma omp parallel default(shared)
 {
 int i;
 #pragma omp for
 for (i=0; i<n; i++)
 work1(i, n);
 }

C/C++
}

Fortran

Example 43.2f

 SUBROUTINE WORK1(I,N)
 INTEGER I, N

INTEGER J
!$OMP DO ! incorrect nesting of loop regions
 DO J = 1, N
 CALL WORK(I,J)
 END DO
 END SUBROUTINE WORK1
 SUBROUTINE WRONG2(N)
 INTEGER N

INTEGER I
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
 DO I = 1, N
 CALL WORK1(I,N)
 END DO
!$OMP END PARALLEL

158 OpenMP API • Version 4.0.1 - February 2014

Fortran

 END SUBROUTINE WRONG2

The following example is non-conforming because the loop and single regions are
closely nested:

C/C++
Example 43.3c

void work(int i, int j) {}
void wrong3(int n)
{
 #pragma omp parallel default(shared)
 {
 int i;
 #pragma omp for
 for (i=0; i<n; i++) {
/* incorrect nesting of regions */
 #pragma omp single
 work(i, 0);
 }
 }

C/C++
}

Fortran

Example 43.3f

 SUBROUTINE WRONG3(N)
 INTEGER N

 INTEGER I
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
 DO I = 1, N
!$OMP SINGLE ! incorrect nesting of regions
 CALL WORK(I, 1)
!$OMP END SINGLE
 END DO
!$OMP END PARALLEL

Fortran

 END SUBROUTINE WRONG3

The following example is non-conforming because a barrier region cannot be closely
nested inside a loop region:

OpenMP Examples 159

C/C++
Example 43.4c

void work(int i, int j) {}
void wrong4(int n)
{

 #pragma omp parallel default(shared)
 {
 int i;
 #pragma omp for
 for (i=0; i<n; i++) {
 work(i, 0);
/* incorrect nesting of barrier region in a loop region */
 #pragma omp barrier
 work(i, 1);
 }
 }

C/C++
}

Fortran

Example 43.4f

 SUBROUTINE WRONG4(N)
 INTEGER N

 INTEGER I
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
 DO I = 1, N
 CALL WORK(I, 1)
! incorrect nesting of barrier region in a loop region
!$OMP BARRIER
 CALL WORK(I, 2)
 END DO
!$OMP END PARALLEL

Fortran

 END SUBROUTINE WRONG4

The following example is non-conforming because the barrier region cannot be
closely nested inside the critical region. If this were permitted, it would result in
deadlock due to the fact that only one thread at a time can enter the critical region:

160 OpenMP API • Version 4.0.1 - February 2014

C/C++
Example 43.5c

void work(int i, int j) {}
void wrong5(int n)
{
 #pragma omp parallel
 {
 #pragma omp critical
 {
 work(n, 0);
/* incorrect nesting of barrier region in a critical region */
 #pragma omp barrier
 work(n, 1);
 }
 }

C/C++
}

Fortran

Example 43.5f

 SUBROUTINE WRONG5(N)
 INTEGER N

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP CRITICAL
 CALL WORK(N,1)
! incorrect nesting of barrier region in a critical region
!$OMP BARRIER
 CALL WORK(N,2)
!$OMP END CRITICAL
!$OMP END PARALLEL

Fortran

 END SUBROUTINE WRONG5

The following example is non-conforming because the barrier region cannot be
closely nested inside the single region. If this were permitted, it would result in
deadlock due to the fact that only one thread executes the single region:

C/C++
Example 43.6c

void work(int i, int j) {}
void wrong6(int n)
{
 #pragma omp parallel

OpenMP Examples 161

 {
 #pragma omp single
 {
 work(n, 0);
/* incorrect nesting of barrier region in a single region */
 #pragma omp barrier
 work(n, 1);
 }
 }

C/C++
}

Fortran

Example 43.6f

 SUBROUTINE WRONG6(N)
 INTEGER N

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP SINGLE
 CALL WORK(N,1)
! incorrect nesting of barrier region in a single region
!$OMP BARRIER
 CALL WORK(N,2)
!$OMP END SINGLE
!$OMP END PARALLEL

Fortran

 END SUBROUTINE WRONG6

162 OpenMP API • Version 4.0.1 - February 2014

44 The omp_set_dynamic and
omp_set_num_threads Routines
Some programs rely on a fixed, prespecified number of threads to execute correctly.
Because the default setting for the dynamic adjustment of the number of threads is
implementation defined, such programs can choose to turn off the dynamic threads
capability and set the number of threads explicitly to ensure portability. The following
example shows how to do this using omp_set_dynamic , and
omp_set_num_threads .

In this example, the program executes correctly only if it is executed by 16 threads. If
the implementation is not capable of supporting 16 threads, the behavior of this example
is implementation defined. Note that the number of threads executing a parallel
region remains constant during the region, regardless of the dynamic threads setting.
The dynamic threads mechanism determines the number of threads to use at the start of
the parallel region and keeps it constant for the duration of the region.

C/C++
Example 44.1c

#include <omp.h>
#include <stdlib.h>

void do_by_16(float *x, int iam, int ipoints) {}

void dynthreads(float *x, int npoints)
{
 int iam, ipoints;

 omp_set_dynamic(0);
 omp_set_num_threads(16);

 #pragma omp parallel shared(x, npoints) private(iam, ipoints)
 {
 if (omp_get_num_threads() != 16)
 abort();

 iam = omp_get_thread_num();
 ipoints = npoints/16;
 do_by_16(x, iam, ipoints);
 }

C/C++
}

OpenMP Examples 163

Fortran

Example 44.1f

 SUBROUTINE DO_BY_16(X, IAM, IPOINTS)
 REAL X(*)
 INTEGER IAM, IPOINTS
 END SUBROUTINE DO_BY_16

 SUBROUTINE DYNTHREADS(X, NPOINTS)

 INCLUDE "omp_lib.h" ! or USE OMP_LIB

 INTEGER NPOINTS
 REAL X(NPOINTS)

 INTEGER IAM, IPOINTS

 CALL OMP_SET_DYNAMIC(.FALSE.)
 CALL OMP_SET_NUM_THREADS(16)

!$OMP PARALLEL SHARED(X,NPOINTS) PRIVATE(IAM, IPOINTS)

 IF (OMP_GET_NUM_THREADS() .NE. 16) THEN
 STOP
 ENDIF

 IAM = OMP_GET_THREAD_NUM()
 IPOINTS = NPOINTS/16
 CALL DO_BY_16(X,IAM,IPOINTS)

!$OMP END PARALLEL

Fortran

 END SUBROUTINE DYNTHREADS

164 OpenMP API • Version 4.0.1 - February 2014

45 The omp_get_num_threads Routine
In the following example, the omp_get_num_threads call returns 1 in the
sequential part of the code, so np will always be equal to 1. To determine the number of
threads that will be deployed for the parallel region, the call should be inside the
parallel region.

C/C++
Example 45.1c

#include <omp.h>
void work(int i);

void incorrect()
{
 int np, i;

 np = omp_get_num_threads(); /* misplaced */

 #pragma omp parallel for schedule(static)
 for (i=0; i < np; i++)
 work(i);

C/C++
}

Fortran

Example 45.1f

 SUBROUTINE WORK(I)
 INTEGER I
 I = I + 1
 END SUBROUTINE WORK

 SUBROUTINE INCORRECT()
 INCLUDE "omp_lib.h" ! or USE OMP_LIB
 INTEGER I, NP

 NP = OMP_GET_NUM_THREADS() !misplaced: will return 1
!$OMP PARALLEL DO SCHEDULE(STATIC)
 DO I = 0, NP-1
 CALL WORK(I)
 ENDDO
!$OMP END PARALLEL DO

Fortran

 END SUBROUTINE INCORRECT

OpenMP Examples 165

The following example shows how to rewrite this program without including a query for
the number of threads:

C/C++
Example 45.2c

#include <omp.h>
void work(int i);

void correct()
{
 int i;

 #pragma omp parallel private(i)
 {
 i = omp_get_thread_num();
 work(i);
 }

C/C++
}

Fortran

Example 45.2f

 SUBROUTINE WORK(I)
 INTEGER I

 I = I + 1

 END SUBROUTINE WORK

 SUBROUTINE CORRECT()
 INCLUDE "omp_lib.h" ! or USE OMP_LIB
 INTEGER I

!$OMP PARALLEL PRIVATE(I)
 I = OMP_GET_THREAD_NUM()
 CALL WORK(I)
!$OMP END PARALLEL

Fortran

 END SUBROUTINE CORRECT

166 OpenMP API • Version 4.0.1 - February 2014

46 The omp_init_lock Routine
The following example demonstrates how to initialize an array of locks in a parallel
region by using omp_init_lock .

C/C++
Example 46.1c

#include <omp.h>

omp_lock_t *new_locks()
{
 int i;
 omp_lock_t *lock = new omp_lock_t[1000];

 #pragma omp parallel for private(i)
 for (i=0; i<1000; i++)
 {
 omp_init_lock(&lock[i]);
 }
 return lock;

C/C++
}

Fortran

Example 46.1f

 FUNCTION NEW_LOCKS()
 USE OMP_LIB ! or INCLUDE "omp_lib.h"
 INTEGER(OMP_LOCK_KIND), DIMENSION(1000) :: NEW_LOCKS

 INTEGER I

!$OMP PARALLEL DO PRIVATE(I)
 DO I=1,1000
 CALL OMP_INIT_LOCK(NEW_LOCKS(I))
 END DO
!$OMP END PARALLEL DO

Fortran

 END FUNCTION NEW_LOCKS

OpenMP Examples 167

47 Ownership of Locks
Ownership of locks has changed since OpenMP 2.5. In OpenMP 2.5, locks are owned by
threads; so a lock released by the omp_unset_lock routine must be owned by the
same thread executing the routine. With OpenMP 3.0, locks are owned by task regions;
so a lock released by the omp_unset_lock routine in a task region must be owned by
the same task region.

This change in ownership requires extra care when using locks. The following program
is conforming in OpenMP 2.5 because the thread that releases the lock lck in the
parallel region is the same thread that acquired the lock in the sequential part of the
program (master thread of parallel region and the initial thread are the same). However,
it is not conforming in OpenMP 3.0 and 3.1, because the task region that releases the
lock lck is different from the task region that acquires the lock.

C/C++
Example 47.1c

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

int main()
{
 int x;
 omp_lock_t lck;

 omp_init_lock (&lck);
 omp_set_lock (&lck);
 x = 0;

#pragma omp parallel shared (x)
 {
 #pragma omp master
 {
 x = x + 1;
 omp_unset_lock (&lck);
 }

 /* Some more stuff. */
 }
 omp_destroy_lock (&lck);

return 0;

C/C++
}

168 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 47.1f

 program lock
 use omp_lib
 integer :: x
 integer (kind=omp_lock_kind) :: lck

 call omp_init_lock (lck)
 call omp_set_lock(lck)
 x = 0

!$omp parallel shared (x)
!$omp master
 x = x + 1
 call omp_unset_lock(lck)
!$omp end master

! Some more stuff.
!$omp end parallel

 call omp_destroy_lock(lck)

Fortran

 end

OpenMP Examples 169

48 Simple Lock Routines
In the following example, the lock routines cause the threads to be idle while waiting for
entry to the first critical section, but to do other work while waiting for entry to the
second. The omp_set_lock function blocks, but the omp_test_lock function does
not, allowing the work in skip to be done.

C/C++
Note that the argument to the lock routines should have type omp_lock_t, and that
there is no need to flush it.

Example 48.1c

#include <stdio.h>
#include <omp.h>
void skip(int i) {}
void work(int i) {}
int main()
{
 omp_lock_t lck;
 int id;
 omp_init_lock(&lck);

 #pragma omp parallel shared(lck) private(id)
 {
 id = omp_get_thread_num();

 omp_set_lock(&lck);
 /* only one thread at a time can execute this printf */
 printf("My thread id is %d.\n", id);
 omp_unset_lock(&lck);

 while (! omp_test_lock(&lck)) {
 skip(id); /* we do not yet have the lock,
 so we must do something else */
 }

 work(id); /* we now have the lock
 and can do the work */

 omp_unset_lock(&lck);
 }
 omp_destroy_lock(&lck);

 return 0;

C/C++
}

170 OpenMP API • Version 4.0.1 - February 2014

Fortran

Note that there is no need to flush the lock variable.

Example 48.1f

 SUBROUTINE SKIP(ID)
 END SUBROUTINE SKIP

 SUBROUTINE WORK(ID)
 END SUBROUTINE WORK

 PROGRAM SIMPLELOCK

 INCLUDE "omp_lib.h" ! or USE OMP_LIB

 INTEGER(OMP_LOCK_KIND) LCK
 INTEGER ID

 CALL OMP_INIT_LOCK(LCK)

!$OMP PARALLEL SHARED(LCK) PRIVATE(ID)
 ID = OMP_GET_THREAD_NUM()
 CALL OMP_SET_LOCK(LCK)
 PRINT *, 'My thread id is ', ID
 CALL OMP_UNSET_LOCK(LCK)

 DO WHILE (.NOT. OMP_TEST_LOCK(LCK))
 CALL SKIP(ID) ! We do not yet have the lock
 ! so we must do something else
 END DO

 CALL WORK(ID) ! We now have the lock
 ! and can do the work

 CALL OMP_UNSET_LOCK(LCK)

!$OMP END PARALLEL

 CALL OMP_DESTROY_LOCK(LCK)

Fortran

 END PROGRAM SIMPLELOCK

OpenMP Examples 171

49 Nestable Lock Routines
The following example demonstrates how a nestable lock can be used to synchronize
updates both to a whole structure and to one of its members.

C/C++
Example 49.1c

#include <omp.h>
typedef struct {
 int a,b;
 omp_nest_lock_t lck; } pair;

int work1();
int work2();
int work3();
void incr_a(pair *p, int a)
{
 /* Called only from incr_pair, no need to lock. */
 p->a += a;
}
void incr_b(pair *p, int b)
{
 /* Called both from incr_pair and elsewhere, */
 /* so need a nestable lock. */

 omp_set_nest_lock(&p->lck);
 p->b += b;
 omp_unset_nest_lock(&p->lck);
}
void incr_pair(pair *p, int a, int b)
{
 omp_set_nest_lock(&p->lck);
 incr_a(p, a);
 incr_b(p, b);
 omp_unset_nest_lock(&p->lck);
}
void nestlock(pair *p)
{
 #pragma omp parallel sections
 {
 #pragma omp section
 incr_pair(p, work1(), work2());
 #pragma omp section
 incr_b(p, work3());
 }

C/C++
}

172 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 49.1f

 MODULE DATA
 USE OMP_LIB, ONLY: OMP_NEST_LOCK_KIND
 TYPE LOCKED_PAIR
 INTEGER A
 INTEGER B
 INTEGER (OMP_NEST_LOCK_KIND) LCK
 END TYPE
 END MODULE DATA

 SUBROUTINE INCR_A(P, A)
 ! called only from INCR_PAIR, no need to lock
 USE DATA
 TYPE(LOCKED_PAIR) :: P
 INTEGER A
 P%A = P%A + A
 END SUBROUTINE INCR_A

 SUBROUTINE INCR_B(P, B)
 ! called from both INCR_PAIR and elsewhere,
 ! so we need a nestable lock
 USE OMP_LIB ! or INCLUDE "omp_lib.h"
 USE DATA
 TYPE(LOCKED_PAIR) :: P
 INTEGER B
 CALL OMP_SET_NEST_LOCK(P%LCK)
 P%B = P%B + B
 CALL OMP_UNSET_NEST_LOCK(P%LCK)
 END SUBROUTINE INCR_B

 SUBROUTINE INCR_PAIR(P, A, B)
 USE OMP_LIB ! or INCLUDE "omp_lib.h"
 USE DATA
 TYPE(LOCKED_PAIR) :: P
 INTEGER A
 INTEGER B

 CALL OMP_SET_NEST_LOCK(P%LCK)
 CALL INCR_A(P, A)
 CALL INCR_B(P, B)
 CALL OMP_UNSET_NEST_LOCK(P%LCK)
 END SUBROUTINE INCR_PAIR

 SUBROUTINE NESTLOCK(P)
 USE OMP_LIB ! or INCLUDE "omp_lib.h"
 USE DATA
 TYPE(LOCKED_PAIR) :: P
 INTEGER WORK1, WORK2, WORK3
 EXTERNAL WORK1, WORK2, WORK3

OpenMP Examples 173

!$OMP PARALLEL SECTIONS

!$OMP SECTION
 CALL INCR_PAIR(P, WORK1(), WORK2())
!$OMP SECTION
 CALL INCR_B(P, WORK3())
!$OMP END PARALLEL SECTIONS

Fortran

 END SUBROUTINE NESTLOCK

174 OpenMP API • Version 4.0.1 - February 2014

50 target Construct

target Construct on parallel Construct
This following example shows how the target construct offloads a code region to a
target device. The variables p, v1, v2, and N are implicitly mapped to the the target
device.

C/C++
Example 50.1c

extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(int N)
{
 int i;
 float p[N], v1[N], v2[N];
 init(v1, v2, N);
 #pragma omp target
 #pragma omp parallel for private(i)
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 output(p, N);

C/C++
}

Fortran

Example 50.1f

subroutine vec_mult(N)
 integer :: i,N
 real :: p(N), v1(N), v2(N)
 call init(v1, v2, N)
 !$omp target
 !$omp parallel do
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 call output(p, N)

Fortran

end subroutine

OpenMP Examples 175

target Construct with map Clause
This following example shows how the target construct offloads a code region to a
target device. The variables p, v1, v2, are explicitly mapped to the the target device
using the map clause. The variable N is implicitly mapped to the target device.

C/C++
Example 50.2c

extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(int N)
{
 int i;
 float p[N], v1[N], v2[N];
 init(v1, v2, N);
 #pragma omp target map(v1, v2, p)
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 output(p, N);

C/C++
}

Fortran

Example 50.2f

subroutine vec_mult(N)
 integer :: i,N
 real :: p(N), v1(N), v2(N)
 call init(v1, v2, N)
 !$omp target map(v1,v2,p)
 !$omp parallel do
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 call output(p, N)

Fortran

end subroutine

176 OpenMP API • Version 4.0.1 - February 2014

map Clause With to/from map-types
The following example shows how the target construct offloads a code region to a
target device. In the map clause, the to and from map-types define the mapping
between the original (host) data and the target (device) data. The to map-type specifies
that the data will only be read on the device, and the from map-type specifies that the
data will only be written to on the device. By specifying a guaranteed access on the
device, data transfers can be reduced for the target region.

The to map-type indicates that at the start of the target region the variables v1 and
v2 are initialized with the values of the corresponding variables on the host device, and
at the end of the target region the variables v1 and v2 are not assigned to their
corresponding variables on the host device.

The from map-type indicates that at the start of the target region the variable p is
not initialized with the value of the corresponding variable on the host device, and at the
end of the target region the variable p is assigned to the corresponding variable on
the host device.

C/C++
Example 50.3c

extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(int N)
{
 int i;
 float p[N], v1[N], v2[N];
 init(v1, v2, N);
 #pragma omp target map(to: v1, v2) map(from: p)
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 output(p, N);

C/C++
}

Fortran

Example 50.3f

The to and from map-types allow programmers to optimize data motion. Since data
for the v arrays are not returned, and data for the p array are not transferred to the
device, only one-half of the data is moved, compared to the default behavior of an
implicit mapping.

OpenMP Examples 177

subroutine vec_mult(N)
 integer :: i,N
 real :: p(N), v1(N), v2(N)
 call init(v1, v2, N)
 !$omp target map(to: v1,v2) map(from: p)
 !$omp parallel do
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 call output(p, N)

Fortran

end subroutine

map Clause with Array Sections
The following example shows how the target construct offloads a code region to a
target device. In the map clause, map-types are used to optimize the mapping of
variables to the target device. Because variables p, v1 and v2 are pointers, array section
notation must be used to map the arrays. The notation :N is equivalent to 0:N.

C/C++
Example 50.4c

extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target map(to: v1[0:N], v2[:N]) map(from: p[0:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 output(p, N);

C/C++
}

178 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 50.4f

In C, the length of the pointed-to array must be specified. In Fortran the extent of the
array is known and the length need not be specified. A section of the array can be
specified with the usual Fortran syntax, as shown in the following example. The value 1
is assumed for the lower bound for array section v2(:N).
module mults
contains
subroutine vec_mult(p,v1,v2,N)
 real,pointer,dimension(:) :: p, v1, v2
 integer :: N,i
 call init(v1, v2, N)
 !$omp target map(to: v1(1:N), v2(:N)) map(from: p(1:N))
 !$omp parallel do
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 call output(p, N)
end subroutine
end module

A more realistic situation in which an assumed-size array is passed to vec_mult
requires that the length of the arrays be specified, because the compiler does not know
the size of the storage. A section of the array must be specified with the usual Fortran
syntax, as shown in the following example. The value 1 is assumed for the lower bound
for array section v2(:N).
module mults
contains
subroutine vec_mult(p,v1,v2,N)
 real,dimension(*) :: p, v1, v2
 integer :: N,i
 call init(v1, v2, N)
 !$omp target map(to: v1(1:N), v2(:N)) map(from: p(1:N))
 !$omp parallel do
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 call output(p, N)
 !$omp end target
end subroutine

Fortran

end module

OpenMP Examples 179

target Construct with if Clause
The following example shows how the target construct offloads a code region to a
target device.

The if clause on the target construct indicates that if the variable N is smaller than a
given threshold, then the target region will be executed by the host device.

The if clause on the parallel construct indicates that if the variable N is smaller
than a second threshold then the parallel region is inactive.

C/C++
Example 50.5c

#define THRESHOLD1 1000000
#define THRESHOLD2 1000
extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target if(N>THRESHOLD1) map(to: v1[0:N], v2[:N])\

map(from: p[0:N])
 #pragma omp parallel for if(N>THRESHOLD2)
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 output(p, N);

C/C++
}

Fortran

Example 50.5f

module params
integer,parameter :: THRESHOLD1=1000000, THRESHHOLD2=1000
end module
subroutine vec_mult(p, v1, v2, N)
 use params
 real :: p(N), v1(N), v2(N)
 integer :: i
 call init(v1, v2, N)
 !$omp target if(N>THRESHHOLD1) map(to: v1, v2) map(from: p)
 !$omp parallel do if(N>THRESHOLD2)
 do i=1,N

 p(i) = v1(i) * v2(i)
 end do
 !$omp end target

180 OpenMP API • Version 4.0.1 - February 2014

 call output(p, N)

Fortran

end subroutine

OpenMP Examples 181

51 target data Construct

Simple target data Construct
This example shows how the target data construct maps variables to a device data
environment. The target data construct creates a new device data environment and
maps the variables v1, v2, and p to the new device data environment. The target
construct enclosed in the target data region creates a new device data environment,
which inherits the variables v1, v2, and p from the enclosing device data environment.
The variable N is mapped into the new device data environment from the encountering
task's data environment.

C/C++
Example 51.1c

extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target data map(to: v1[0:N], v2[:N]) map(from: p[0:N])
 {
 #pragma omp target
 #pragma omp parallel for
 for (i=0; i<N; i++)

p[i] = v1[i] * v2[i];
 }
 output(p, N);

C/C++
}

Fortran

Example 51.1f

The Fortran code passes a reference and specifies the extent of the arrays in the
declaration. No length information is necessary in the map clause, as is required with C/
C++ pointers.

182 OpenMP API • Version 4.0.1 - February 2014

subroutine vec_mult(p, v1, v2, N)
 real :: p(N), v1(N), v2(N)
 integer :: i
 call init(v1, v2, N)
 !$omp target data map(to: v1, v2) map(from: p)
 !$omp target
 !$omp parallel do
 do i=1,N

 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 !$omp end target data
 call output(p, N)

Fortran

end subroutine

target data Region Enclosing Multiple
target Regions
The following examples show how the target data construct maps variables to a
device data environment of a target region. The target data construct creates a
device data environment and encloses target regions, which have their own device
data environments. The device data environment of the target data region is
inherited by the device data environment of an enclosed target region. The target
data construct is used to create variables that will persist throughout the target
data region.

In the following example the variables v1 and v2 are mapped at each target
construct. Instead of mapping the variable p twice, once at each target construct, p is
mapped once by the target data construct.

C/C++
Example 51.2c

extern void init(float*, float*, int);
extern void init_again(float*, float*, int);
extern void output(float*, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target data map(from: p[0:N])
 {
 #pragma omp target map(to: v1[:N], v2[:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)

OpenMP Examples 183

p[i] = v1[i] * v2[i];
 init_again(v1, v2, N);
 #pragma omp target map(to: v1[:N], v2[:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)

p[i] = p[i] + (v1[i] * v2[i]);
 }
 output(p, N);

C/C++
}

Fortran

Example 51.2f

The Fortran code uses reference and specifies the extent of the p, v1 and v2 arrays. No
length information is necessary in the map clause, as is required with C/C++ pointers.
The arrays v1 and v2 are mapped at each target construct. Instead of mapping the
array p twice, once at each target construct, p is mapped once by the target data
construct.
subroutine vec_mult(p, v1, v2, N)
 real :: p(N), v1(N), v2(N)
 integer :: i
 call init(v1, v2, N)
 !$omp target data map(from: p)
 !$omp target map(to: v1, v2)
 !$omp parallel do
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 call init_again(v1, v2, N)
 !$omp target map(to: v1, v2)
 !$omp parallel do
 do i=1,N
 p(i) = p(i) + v1(i) * v2(i)
 end do
 !$omp end target
 !$omp end target data
 call output(p, N)

Fortran

end subroutine

C/C++
In the following example, the variable tmp defaults to tofrom map-type and is
mapped at each target construct. The array Q is mapped once at the enclosing
target data region instead of at each target construct.

184 OpenMP API • Version 4.0.1 - February 2014

#include <math.h>
void gramSchmidt(restrict float Q[][COLS], const int rows, const int cols)
{
 #pragma omp target data map(Q[0:rows][0:cols])
 for(int k=0; k < cols; k++)
 {
 double tmp = 0.0;
 #pragma omp target
 #pragma omp parallel for reduction(+:tmp)
 for(int i=0; i < rows; i++)
 tmp += (Q[i][k] * Q[i][k]);
 tmp = 1/sqrt(tmp);
 #pragma omp target
 #pragma omp parallel for
 for(int i=0; i < rows; i++)
 Q[i][k] *= tmp;
 }

C/C++
}

Fortran

Example 51.3f

In the following example the arrays v1 and v2 are mapped at each target construct.
Instead of mapping the array Q twice at each target construct, Q is mapped once by
the target data construct. Note, the tmp variable is implicitly remapped for each
target region, mapping the value from the device to the host at the end of the first
target region, and from the host to the device for the second target region.

subroutine gramSchmidt(Q,rows,cols)
integer :: rows,cols, i,k
double precision :: Q(rows,cols), tmp
 !$omp target data map(Q)
 do k=1,cols
 tmp = 0.0d0
 !$omp target
 !$omp parallel do reduction(+:tmp)
 do i=1,rows
 tmp = tmp + (Q(i,k) * Q(i,k))
 end do
 !$omp end target
 tmp = 1.0d0/sqrt(tmp)
 !$omp target
 !$omp parallel do
 do i=1,rows
 Q(i,k) = Q(i,k)*tmp
 enddo
 !$omp end target

OpenMP Examples 185

 end do
 !$omp end target data

Fortran

end subroutine

target data Construct with Orphaned Call
The following two examples show how the target data construct maps variables to
a device data environment. The target data construct's device data environment
encloses the target construct's device data environment in the function
vec_mult().

When the type of the variable appearing in an array section is pointer, the pointer
variable and the storage location of the corresponding array section are mapped to the
device data environment. The pointer variable is treated as if it had appeared in a map
clause with a map-type of alloc. The array section's storage location is mapped
according to the map-type in the map clause (the default map-type is tofrom).

The target construct's device data environment inherits the storage locations of the
array sections v1[0:N], v2[:n], and p0[0:N] from the enclosing target data
construct's device data environment. Neither initialization nor assignment is performed
for the array sections in the new device data environment.

The pointer variables p1, v3, and v4 are mapped into the target construct's device data
environment with an implicit map-type of alloc and they are assigned the address of the
storage location associated with their corresponding array sections. Note that the
following pairs of array section storage locations are equivalent (p0[:N],
p1[:N]), (v1[:N],v3[:N]), and (v2[:N],v4[:N]).

C/C++
Example 51.3c

void vec_mult(float*, float*, float*, int);
extern void init(float*, float*, int);
extern void output(float*, int);
void foo(float *p0, float *v1, float *v2, int N)
{
 init(v1, v2, N);
 #pragma omp target data map(to: v1[0:N], v2[:N]) map(from: p0[0:N])
 {
 vec_mult(p0, v1, v2, N);
 }
 output(p0, N);
}
void vec_mult(float *p1, float *v3, float *v4, int N)
{

186 OpenMP API • Version 4.0.1 - February 2014

 #pragma omp target map(to: v3[0:N], v4[:N]) map(from: p1[0:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p1[i] = v3[i] * v4[i];

C/C++
}

Fortran

Example 51.4f

The Fortran code maps the pointers and storage in an identical manner (same extent, but
uses indices from 1 to N).

The target construct's device data environment inherits the storage locations of the
arrays v1, v2 and p0 from the enclosing target data constructs's device data
environment. However, in Fortran the associated data of the pointer is known, and the
shape is not required.

The pointer variables p1, v3, and v4 are mapped into the target construct's device
data environment with an implicit map-type of alloc and they are assigned the address
of the storage location associated with their corresponding array sections. Note that the
following pair of array storage locations are equivalent (p0, p1), (v1,v3), and
(v2,v4).
module mults
contains
subroutine foo(p0,v1,v2,N)
real,pointer,dimension(:) :: p0, v1, v2
integer :: N,i
 call init(v1, v2, N)
 !$omp target data map(to: v1, v2) map(from: p0)
 call vec_mult(p0,v1,v2,N)
 !omp end target data
 call output(p0, N)
end subroutine
subroutine vec_mult(p1,v3,v4,N)
real,pointer,dimension(:) :: p1, v3, v4
integer :: N,i
 !$omp target map(to: v3, v4) map(from: p1)
 !$omp parallel do
 do i=1,N
 p1(i) = v3(i) * v4(i)
 end do
 !$omp end target
end subroutine

Fortran

end module

OpenMP Examples 187

C/C++
Example 51.4c

In the following example, the variables p1, v3, and v4 are references to the pointer
variables p0, v1 and v2 respectively. The target construct's device data environment
inherits the pointer variables p0, v1, and v2 from the enclosing target data
construct's device data environment. Thus, p1, v3, and v4 are already present in the
device data environment.

void vec_mult(float* &, float* &, float* &, int &);
extern void init(float*, float*, int);
extern void output(float*, int);
void foo(float *p0, float *v1, float *v2, int N)
{
 init(v1, v2, N);
 #pragma omp target data map(to: v1[0:N], v2[:N]) map(from: p0[0:N])
 {
 vec_mult(p0, v1, v2, N);
 }
 output(p0, N);
}
void vec_mult(float* &p1, float* &v3, float* &v4, int &N)
{
 int i;
 #pragma omp target map(to: v3[0:N], v4[:N]) map(from: p1[0:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p1[i] = v3[i] * v4[i];

C/C++
}

Fortran

Example 51.5f

In the following example, the usual Fortran approach is used for dynamic memory. The
p0, v1, v2 arrays are allocated in the main program and passed as references from one
routine to another. In vec_mult, p1, v3 and v4 are references to the p0, v1, and v2
arrays, respectively. The target construct's device data environment inherits the arrays
p0, v1, and v2 from the enclosing target data construct's device data environment.
Thus, p1, v3, and v4 are already present in the device data environment.

module my_mult
contains
subroutine foo(p0,v1,v2,N)

188 OpenMP API • Version 4.0.1 - February 2014

real,dimension(:) :: p0, v1, v2
integer :: N,i
 call init(v1, v2, N)
 !$omp target data map(to: v1, v2) map(from: p0)
 call vec_mult(p0,v1,v2,N)
 !omp end target data
 call output(p0, N)
end subroutine
subroutine vec_mult(p1,v3,v4,N)
real,dimension(:) :: p1, v3, v4
integer :: N,i
 !$omp target map(to: v3, v4) map(from: p1)
 !$omp parallel do
 do i=1,N
 p1(i) = v3(i) * v4(i)
 end do
 !$omp end target
end subroutine
end module
!
program main
use my_mult
integer, parameter :: N=1024
real,allocatable, dimension(:) :: p, v1, v2
 allocate(p(N), v1(N), v2(N))
 call foo(p,v1,v2,N)

Fortran

end program

target data Construct With if Clause
The following two examples show how the target data construct maps variables to
a device data environment.

In the following example, the if clause on the target data construct indicates that
if the variable N is smaller than a given threshold, then the target data construct will
not create a device data environment.

The target constructs enclosed in the target data region must also use an if
clause on the same condition, otherwise the pointer variable p is implicitly mapped with
a map-type of tofrom, but the storage location for the array section p[0:N] will not
be mapped in the device data environments of the target constructs.

C/C++
Example 51.5c

#define THRESHOLD 1000000

OpenMP Examples 189

extern void init(float*, float*, int);
extern void init_again(float*, float*, int);
extern void output(float*, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target data if(N>THRESHOLD) map(from: p[0:N])
 {
 #pragma omp target if (N>THRESHOLD) map(to: v1[:N], v2[:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 init_again(v1, v2, N);
 #pragma omp target if (N>THRESHOLD) map(to: v1[:N], v2[:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = p[i] + (v1[i] * v2[i]);
 }
 output(p, N);

C/C++
}

Fortran

Example 51.6f

The if clauses work the same way for the following Fortran code. The target
constructs enclosed in the target data region should also use an if clause with the
same condition, so that the target data region and the target region are either
both created for the device, or are both ignored.

module params
integer,parameter :: THRESHOLD=1000000
end module
subroutine vec_mult(p, v1, v2, N)
 use params
 real :: p(N), v1(N), v2(N)
 integer :: i
 call init(v1, v2, N)
 !$omp target data if(N>THRESHOLD) map(from: p)
 !$omp target if(N>THRESHOLD) map(to: v1, v2)
 !$omp parallel do
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 call init_again(v1, v2, N)
 !$omp target if(N>THRESHOLD) map(to: v1, v2)
 !$omp parallel do

190 OpenMP API • Version 4.0.1 - February 2014

 do i=1,N
 p(i) = p(i) + v1(i) * v2(i)
 end do
 !$omp end target
 !$omp end target data
 call output(p, N)

Fortran

end subroutine

In the following example, when the if clause conditional expression on the target
construct evaluates to false, the target region will execute on the host device. However,
the target data construct created an enclosing device data environment that mapped
p[0:N] to a device data environment on the default device. At the end of the target
data region the array section p[0:N] will be assigned from the device data
environment to the corresponding variable in the data environment of the task that
encountered the target data construct, resulting in undefined values in p[0:N].

C/C++
Example 51.6c

#define THRESHOLD 1000000
extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target data map(from: p[0:N])
 {
 #pragma omp target if (N>THRESHOLD) map(to: v1[:N], v2[:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 } /* UNDEFINED behavior if N<=THRESHOLD */
 output(p, N);

C/C++
}

Fortran

Example 51.7f

The if clauses work the same way for the following Fortran code. When the if clause
conditional expression on the target construct evaluates to false, the target region
will execute on the host device. However, the target data construct created an
enclosing device data environment that mapped the p array (and v1 and v2) to a device
data environment on the default target device. At the end of the target data region

OpenMP Examples 191

the p array will be assigned from the device data environment to the corresponding
variable in the data environment of the task that encountered the target data
construct, resulting in undefined values in p.

module params
integer, parameter :: THRESHOLD=1000000
end module
subroutine vec_mult(p, v1, v2, N)
 use params
 real :: p(N), v1(N), v2(N)
 integer :: i
 call init(v1, v2, N)
 !$omp target data map(from: p)
 !$omp target if(N>THRESHOLD) map(to: v1, v2)
 !$omp parallel do
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 !$omp end target data
 call output(p, N) !*** UNDEFINED behavior if N<=THRESHOLD

Fortran

end subroutine

192 OpenMP API • Version 4.0.1 - February 2014

52 target update Construct

Simple target data and target update
Constructs
The following example shows how the target update construct updates variables in
a device data environment.

The target data construct maps array sections v1[:N] and v2[:N] (arrays v1
and v2 in the Fortran code) into a device data environment.

The task executing on the host device encounters the first target region and waits for
the completion of the region.

After the execution of the first target region, the task executing on the host device
then assigns new values to v1[:N] and v2[:N] (v1 and v2 arrays in Fortran code)
in the task's data environment by calling the function init_again().

The target update construct assigns the new values of v1 and v2 from the task's
data environment to the corresponding mapped array sections in the device data
environment of the target data construct.

The task executing on the host device then encounters the second target region and
waits for the completion of the region.

The second target region uses the updated values of v1[:N] and v2[:N].

C/C++
Example 52.1c

extern void init(float *, float *, int);
extern void init_again(float *, float *, int);
extern void output(float *, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target data map(to: v1[:N], v2[:N]) map(from: p[0:N])
 {
 #pragma omp target
 #pragma omp parallel for
 for (i=0; i<N; i++)

OpenMP Examples 193

p[i] = v1[i] * v2[i];
 init_again(v1, v2, N);
 #pragma omp target update to(v1[:N], v2[:N])
 #pragma omp target
 #pragma omp parallel for
 for (i=0; i<N; i++)

p[i] = p[i] + (v1[i] * v2[i]);
 }
 output(p, N);

C/C++
}

Fortran

Example 52.1f

subroutine vec_mult(p, v1, v2, N)
 real :: p(N), v1(N), v2(N)
 integer :: i
 call init(v1, v2, N)
 !$omp target data map(to: v1, v2) map(from: p)
 !$omp target
 !$omp parallel do
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 call init_again(v1, v2, N)
 !$omp target update to(v1, v2)
 !$omp target
 !$omp parallel do
 do i=1,N
 p(i) = p(i) + v1(i) * v2(i)
 end do
 !$omp end target
 !$omp end target data
 call output(p, N)

Fortran

end subroutine

194 OpenMP API • Version 4.0.1 - February 2014

target update Construct With if Clause
The following example shows how the target update construct updates variables in
a device data environment.

The target data construct maps array sections v1[:N] and v2[:N] (arrays v1 and
v2 in the Fortran code) into a device data environment. In between the two target
regions, the task executing on the host device conditionally assigns new values to v1
and v2 in the task's data environment. The function maybe_init_again() returns
true if new data is written.

When the conditional expression (the return value of maybe_init_again()) in the
if clause is true, the target update construct assigns the new values of v1 and v2
from the task's data environment to the corresponding mapped array sections in the
target data construct's device data environment.

C/C++
Example 52.2c

extern void init(float *, float *, int);
extern int maybe_init_again(float *, int);
extern void output(float *, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target data map(to: v1[:N], v2[:N]) map(from: p[0:N])
 {
 int changed;
 #pragma omp target
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 changed = maybe_init_again(v1, N);
 #pragma omp target update if (changed) to(v1[:N])
 changed = maybe_init_again(v2, N);
 #pragma omp target update if (changed) to(v2[:N])
 #pragma omp target
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = p[i] + (v1[i] * v2[i]);
 }
 output(p, N);

C/C++
}

OpenMP Examples 195

Fortran

Example 52.2f

subroutine vec_mult(p, v1, v2, N)
 interface
 logical function maybe_init_again (v1, N)
 real :: v1(N)
 integer :: N
 end function
 end interface
 real :: p(N), v1(N), v2(N)
 integer :: i
 logical :: changed
 call init(v1, v2, N)
 !$omp target data map(to: v1, v2) map(from: p)
 !$omp target
 !$omp parallel do
 do i=1, N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 changed = maybe_init_again(v1, N)
 !$omp target if(changed) update to(v1(:N))
 changed = maybe_init_again(v2, N)
 !$omp target if(changed) update to(v2(:N))
 !$omp target
 !$omp parallel do
 do i=1, N
 p(i) = p(i) + v1(i) * v2(i)
 end do
 !$omp end target
 !$omp end target data
 call output(p, N)

Fortran

end subroutine

196 OpenMP API • Version 4.0.1 - February 2014

53 declare target Construct

declare target and end declare target for
a Function
The following example shows how the declare target directive is used to indicate
that the corresponding call inside a target region is to a fib function that can
execute on the default target device.

A version of the function is also available on the host device. When the if clause
conditional expression on the target construct evaluates to false, the target region
(thus fib) will execute on the host device.

For C/C++ codes the declaration of the function fib appears between the declare
target and end declare target directives.

C/C++
Example 53.1c

#pragma omp declare target
extern void fib(int N);
#pragma omp end declare target
#define THRESHOLD 1000000
void fib_wrapper(int n)
{
 #pragma omp target if(n > THRESHOLD)
 {
 fib(n);
 }

C/C++
}

Fortran

Example 53.1f

The Fortran fib subroutine contains a declare target declaration to indicate to the
compiler to create an device executable version of the procedure. The subroutine name
has not been included on the declare target directive and is, therefore, implicitly
assumed.

OpenMP Examples 197

The program uses the module_fib module, which presents an explicit interface to the
compiler with the declare target declarations for processing the fib call.

module module_fib
contains
 subroutine fib(N)
 integer :: N
 !$omp declare target
 !...
 end subroutine
end module
module params
integer :: THRESHOLD=1000000
end module
program my_fib
use params
use module_fib
 !$omp target if(N > THRESHOLD)
 call fib(N)
 !$omp end target
end program

The next Fortran example shows the use of an external subroutine. Without an explicit
interface (through module use or an interface block) the declare target
declarations within a external subroutine are unknown to the main program unit;
therefore, a declare target must be provided within the program scope for the
compiler to determine that a target binary should be available.

Example 53.2f

program my_fib
integer :: N = 8
!$omp declare target(fib)
 !$omp target
 call fib(N)
 !$omp end target
end program
subroutine fib(N)
integer :: N
!$omp declare target
 print*,"hello from fib"
 !...

Fortran

end subroutine

198 OpenMP API • Version 4.0.1 - February 2014

declare target Construct for Class Type
The following example shows how the declare target and end declare
target directives are used to enclose the declaration of a variable varY with a class
type typeY. The member function typeY::foo() cannot be accessed on a target
device because its declaration did not appear between declare target and end
declare target directives.

C/C++
Example 53.2c

struct typeX
{
 int a;
}
class typeY
{
 int foo() { return a^0x01;}
 int a;
}
#pragma omp declare target
struct typeX varX; // ok
class typeY varY; // ok if varY.foo() not called on target device
#pragma omp end declare target
void foo()
{
 #pragma omp target
 {
 varX.a = 100; // ok
 varY.foo(); // error foo() is not available on a target device
 }

C/C++
}

declare target and end declare target for
Variables
The following examples show how the declare target and end declare
target directives are used to indicate that global variables are mapped to the implicit
device data environment of each target device.

In the following example, the declarations of the variables p, v1, and v2 appear
between declare target and end declare target directives indicating that the
variables are mapped to the implicit device data environment of each target device. The

OpenMP Examples 199

target update directive is then used to manage the consistency of the variables p,
v1, and v2 between the data environment of the encountering host device task and the
implicit device data environment of the default target device.

C/C++
Example 53.3c

#define N 1000
#pragma omp declare target
float p[N], v1[N], v2[N];
#pragma omp end declare target
extern void init(float *, float *, int);
extern void output(float *, int);
void vec_mult()
{
 int i;
 init(v1, v2, N);
 #pragma omp target update to(v1, v2)
 #pragma omp target
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 #pragma omp target update from(p)
 output(p, N);

C/C++
}

Fortran

Example 53.3f

The Fortran version of the above C code uses a different syntax. Fortran modules use a
list syntax on the declare target directive to declare mapped variables.

module my_arrays
!$omp declare target (N, p, v1, v2)
integer, parameter :: N=1000
real :: p(N), v1(N), v2(N)
end module
subroutine vec_mult()
use my_arrays
 integer :: i
 call init(v1, v2, N);
 !$omp target update to(v1, v2)
 !$omp target
 !$omp parallel do
 do i = 1,N
 p(i) = v1(i) * v2(i)

200 OpenMP API • Version 4.0.1 - February 2014

 end do
 !$omp end target
 !$omp target update from (p)
 call output(p, N)

Fortran

end subroutine

The following example also indicates that the function Pfun() is available on the
target device, as well as the variable Q, which is mapped to the implicit device data
environment of each target device. The target update directive is then used to
manage the consistency of the variable Q between the data environment of the
encountering host device task and the implicit device data environment of the default
target device.

C/C++
In the following example, the function and variable declarations appear between the
declare target and end declare target directives.

Example 53.4c

#define N 10000
#pragma omp declare target
float Q[N][N];
float Pfun(const int i, const int k)
{ return Q[i][k] * Q[k][i]; }
#pragma omp end declare target
float accum(int k)
{
 float tmp = 0.0;
 #pragma omp target update to(Q)
 #pragma omp target
 #pragma omp parallel for reduction(+:tmp)
 for(int i=0; i < N; i++)
 tmp += Pfun(i,k);
 return tmp;

C/C++
}

Fortran

Example 53.4f

The Fortran version of the above C code uses a different syntax. In Fortran modules a
list syntax on the declare target directive is used to declare mapped variables and
procedures. The N and Q variables are declared as a comma separated list. When the
declare target directive is used to declare just the procedure, the procedure name
need not be listed -- it is implicitly assumed, as illustrated in the Pfun() function.

OpenMP Examples 201

module my_global_array
!$omp declare target (N,Q)
integer, parameter :: N=10
real :: Q(N,N)
contains
function Pfun(i,k)
!$omp declare target
real :: Pfun
integer,intent(in) :: i,k
 Pfun=(Q(i,k) * Q(k,i))
end function
end module
function accum(k) result(tmp)
use my_global_array
real :: tmp
integer :: i, k
 tmp = 0.0e0
 !$omp target
 !$omp parallel do reduction(+:tmp)
 do i=1,N
 tmp = tmp + Pfun(k,i)
 end do
 !$omp end target

Fortran

end function

declare target and end declare target
with declare simd
The following example shows how the declare target and end declare
target directives are used to indicate that a function is available on a target device.
The declare simd directive indicates that there is a SIMD version of the function
P() that is available on the target device as well as one that is available on the host
device.

C/C++
Example 53.5c

#define N 10000
#define M 1024
#pragma omp declare target
float Q[N][N];
#pragma omp declare simd uniform(i) linear(k) notinbranch
float P(const int i, const int k)
{
 return Q[i][k] * Q[k][i];
}

202 OpenMP API • Version 4.0.1 - February 2014

#pragma omp end declare target
float accum(void)
{
 float tmp = 0.0;
 int i, k;
#pragma omp target
#pragma omp parallel for reduction(+:tmp)
 for (i=0; i < N; i++) {
 float tmp1 = 0.0;
#pragma omp simd reduction(+:tmp1)
 for (k=0; k < M; k++) {
 tmp1 += P(i,k);
 }
 tmp += tmp1;
 }
 return tmp;

C/C++
}

Fortran

Example 53.5f

The Fortran version of the above C code uses a different syntax. Fortran modules use a
list syntax of the declare target declaration for the mapping. Here the N and Q
variables are declared in the list form as a comma separated list. The function
declaration does not use a list and implicitly assumes the function name. In this Fortran
example row and column indices are reversed relative to the C/C++ example, as is usual
for codes optimized for memory access.

module my_global_array
!$omp declare target (N,Q)
integer, parameter :: N=10000, M=1024
real :: Q(N,N)
contains
function P(k,i)
!$omp declare simd uniform(i) linear(k) notinbranch
!$omp declare target
real :: P
integer,intent(in) :: k,i
 P=(Q(k,i) * Q(i,k))
end function
end module
function accum() result(tmp)
use my_global_array
real :: tmp, tmp1
integer :: i
 tmp = 0.0e0
 !$omp target
 !$omp parallel do private(tmp1) reduction(+:tmp)

OpenMP Examples 203

 do i=1,N
 tmp1 = 0.0e0
 !$omp simd reduction(+:tmp1)
 do k = 1,M
 tmp1 = tmp1 + P(k,i)
 end do
 tmp = tmp + tmp1
 end do
 !$omp end target

Fortran

end function

204 OpenMP API • Version 4.0.1 - February 2014

54 teams Constructs

target and teams Constructs with
omp_get_num_teams and omp_get_team_num
Routines
The following example shows how the target and teams constructs are used to
create a league of thread teams that execute a region. The teams construct creates a
league of at most two teams where the master thread of each team executes the teams
region.

The omp_get_num_teams routine returns the number of teams executing in a teams
region. The omp_get_team_num routine returns the team number, which is an integer
between 0 and one less than the value returned by omp_get_num_teams. The
following example manually distributes a loop across two teams.

C/C++
Example 54.1c

#include <stdlib.h>
#include <omp.h>
float dotprod(float B[], float C[], int N)
{
 float sum0 = 0.0;
 float sum1 = 0.0;
 #pragma omp target map(to: B[:N], C[:N])
 #pragma omp teams num_teams(2)
 {
 int i;
 if (omp_get_num_teams() != 2)
 abort();
 if (omp_get_team_num() == 0)
 {

 #pragma omp parallel for reduction(+:sum0)
 for (i=0; i<N/2; i++)
 sum0 += B[i] * C[i];

 }
 else if (omp_get_team_num() == 1)
 {

 #pragma omp parallel for reduction(+:sum1)
 for (i=N/2; i<N; i++)
 sum1 += B[i] * C[i];

 }

OpenMP Examples 205

 }
 return sum0 + sum1;

C/C++
}

Fortran

Example 54.1f

function dotprod(B,C,N) result(sum)
use omp_lib, ONLY : omp_get_num_teams, omp_get_team_num
 real :: B(N), C(N), sum,sum0, sum1
 integer :: N, i
 sum0 = 0.0e0
 sum1 = 0.0e0
 !$omp target map(to: B, C)
 !$omp teams num_teams(2)
 if (omp_get_num_teams() /= 2) stop "2 teams required"
 if (omp_get_team_num() == 0) then
 !$omp parallel do reduction(+:sum0)
 do i=1,N/2
 sum0 = sum0 + B(i) * C(i)
 end do
 else if (omp_get_team_num() == 1) then
 !$omp parallel do reduction(+:sum1)
 do i=N/2+1,N
 sum1 = sum1 + B(i) * C(i)
 end do
 end if
 !$omp end teams
 !$omp end target
 sum = sum0 + sum1

Fortran

end function

target, teams, and distribute Constructs
The following example shows how the target, teams, and distribute constructs
are used to execute a loop nest in a target region. The teams construct creates a
league and the master thread of each team executes the teams region. The
distribute construct schedules the subsequent loop iterations across the master
threads of each team.

206 OpenMP API • Version 4.0.1 - February 2014

The number of teams in the league is less than or equal to the variable num_blocks.
Each team in the league has a number of threads less than or equal to the variable
block_threads. The iterations in the outer loop are distributed among the master
threads of each team.

When a team's master thread encounters the parallel loop construct before the inner
loop, the other threads in its team are activated. The team executes the parallel
region and then workshares the execution of the loop.

Each master thread executing the teams region has a private copy of the variable sum
that is created by the reduction clause on the teams construct. The master thread and
all threads in its team have a private copy of the variable sum that is created by the
reduction clause on the parallel loop construct. The second private sum is reduced
into the master thread's private copy of sum created by the teams construct. At the end
of the teams region, each master thread's private copy of sum is reduced into the final
sum that is implicitly mapped into the target region.

C/C++
Example 54.2c

float dotprod(float B[], float C[], int N, int block_size,
 int num_teams, int block_threads)
{
 float sum = 0;
 int i, i0;
 #pragma omp target map(to: B[0:N], C[0:N])
 #pragma omp teams num_teams(num_teams) thread_limit(block_threads) \
 reduction(+:sum)
 #pragma omp distribute
 for (i0=0; i0<N; i0 += block_size)
 #pragma omp parallel for reduction(+:sum)
 for (i=i0; i< min(i0+block_size,N); i++)
 sum += B[i] * C[i];
 return sum;

C/C++
}

Fortran

Example 54.2f

function dotprod(B,C,N, block_size, num_teams, block_threads) result(sum)
implicit none
 real :: B(N), C(N), sum
 integer :: N, block_size, num_teams, block_threads, i, i0
 sum = 0.0e0
 !$omp target map(to: B, C)

OpenMP Examples 207

 !$omp teams num_teams(num_teams) thread_limit(block_threads) &
reduction(+:sum)

 !$omp distribute
 do i0=1,N, block_size
 !$omp parallel do reduction(+:sum)
 do i = i0, min(i0+block_size,N)
 sum = sum + B(i) * C(i)
 end do
 end do
 !$omp end teams
 !$omp end target

Fortran

end function

target teams, and Distribute Parallel Loop
Constructs
The following example shows how the target teams and distribute parallel loop
constructs are used to execute a target region. The target teams construct creates
a league of teams where the master thread of each team executes the teams region.

The distribute parallel loop construct schedules the loop iterations across the master
threads of each team and then across the threads of each team.

C/C++
Example 54.3c

float dotprod(float B[], float C[], int N)
{
 float sum = 0;
 int i;
 #pragma omp target teams map(to: B[0:N], C[0:N])
 #pragma omp distribute parallel for reduction(+:sum)
 for (i=0; i<N; i++)
 sum += B[i] * C[i];
 return sum;

C/C++
}

208 OpenMP API • Version 4.0.1 - February 2014

Fortran

Example 54.3f

function dotprod(B,C,N) result(sum)
 real :: B(N), C(N), sum
 integer :: N, i
 sum = 0.0e0
 !$omp target teams map(to: B, C)
 !$omp distribute parallel do reduction(+:sum)
 do i = 1,N
 sum = sum + B(i) * C(i)
 end do
 !$omp end teams
 !$omp end target

Fortran

end function

target teams and Distribute Parallel Loop
Constructs with Scheduling Clauses
The following example shows how the target teams and distribute parallel loop
constructs are used to execute a target region. The teams construct creates a league
of at most eight teams where the master thread of each team executes the teams region.
The number of threads in each team is less than or equal to 16.

The distribute parallel loop construct schedules the subsequent loop iterations
across the master threads of each team and then across the threads of each team.

The dist_schedule clause on the distribute parallel loop construct indicates that
loop iterations are distributed to the master thread of each team in chunks of 1024
iterations.

The schedule clause indicates that the 1024 iterations distributed to a master thread
are then assigned to the threads in its associated team in chunks of 64 iterations.

C/C++
Example 54.4c

#define N 1024*1024
float dotprod(float B[], float C[], int N)
{
 float sum = 0;
 int i;
 #pragma omp target map(to: B[0:N], C[0:N])
 #pragma omp teams num_teams(8) thread_limit(16)

OpenMP Examples 209

 #pragma omp distribute parallel for reduction(+:sum) \
 dist_schedule(static, 1024) schedule(static, 64)
 for (i=0; i<N; i++)
 sum += B[i] * C[i];
 return sum;

C/C++
}

Fortran

Example 54.4f

module arrays
integer,parameter :: N=1024*1024
real :: B(N), C(N)
end module
function dotprod() result(sum)
use arrays
 real :: sum
 integer :: i
 sum = 0.0e0
 !$omp target map(to: B, C)
 !$omp teams num_teams(8) thread_limit(16)
 !$omp distribute parallel do reduction(+:sum) &
 !$omp& dist_schedule(static, 1024) schedule(static, 64)
 do i = 1,N
 sum = sum + B(i) * C(i)
 end do
 !$omp end teams
 !$omp end target

Fortran

end function

target teams and distribute simd
Constructs
The following example shows how the target teams and distribute simd
constructs are used to execute a loop in a target region. The target teams
construct creates a league of teams where the master thread of each team executes the
teams region.

The distribute simd construct schedules the loop iterations across the master
thread of each team and then uses SIMD parallelism to execute the iterations.

210 OpenMP API • Version 4.0.1 - February 2014

C/C++
Example 54.5c

extern void init(float *, float *, int);
extern void output(float *, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target teams map(to: v1[0:N], v2[:N]) map(from: p[0:N])
 #pragma omp distribute simd
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 output(p, N);

C/C++
}

Fortran

Example 54.5f

subroutine vec_mult(p, v1, v2, N)
 real :: p(N), v1(N), v2(N)
 integer :: i
 call init(v1, v2, N)
 !$omp target teams map(to: v1, v2) map(from: p)
 !$omp distribute simd
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target teams
 call output(p, N)

Fortran

end subroutine

target teams and Distribute Parallel Loop
SIMD Constructs
The following example shows how the target teams and the distribute parallel loop
SIMD constructs are used to execute a loop in a target teams region. The target
teams construct creates a league of teams where the master thread of each team
executes the teams region.

OpenMP Examples 211

The distribute parallel loop SIMD construct schedules the loop iterations across the
master thread of each team and then across the threads of each team where each thread
uses SIMD parallelism.

C/C++
Example 54.6c

extern void init(float *, float *, int);
extern void output(float *, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 #pragma omp target teams map(to: v1[0:N], v2[:N]) map(from: p[0:N])
 #pragma omp distribute parallel for simd
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 output(p, N);

C/C++
}

Fortran

Example 54.6f

subroutine vec_mult(p, v1, v2, N)
 real :: p(N), v1(N), v2(N)
 integer :: i
 call init(v1, v2, N)
 !$omp target teams map(to: v1, v2) map(from: p)
 !$omp distribute parallel do simd
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target teams
 call output(p, N)

Fortran

end subroutine

212 OpenMP API • Version 4.0.1 - February 2014

55 Asynchronous Execution of a target
Region Using Tasks
The following example shows how the task and target constructs are used to
execute multiple target regions asynchronously. The task that encounters the task
construct generates an explicit task that contains a target region. The thread
executing the explicit task encounters a task scheduling point while waiting for the
execution of the target region to complete, allowing the thread to switch back to the
execution of the encountering task or one of the previously generated explicit tasks.

C/C++
Example 55.1c

#pragma omp declare target
float F(float);
#pragma omp end declare target
#define N 1000000000
#define CHUNKSZ 1000000
void init(float *, int);
float Z[N];
void pipedF()
{
 int C, i;
 init(Z, N);
 for (C=0; C<N; C+=CHUNKSZ)
 {
 #pragma omp task
 #pragma omp target map(Z[C:CHUNKSZ])
 #pragma omp parallel for
 for (i=0; i<CHUNKSZ; i++)
 Z[i] = F(Z[i]);
 }
 #pragma omp taskwait

C/C++
}

Fortran

Example 55.1f

The Fortran version has an interface block that contains the declare target. An
identical statement exists in the function declaration (not shown here).

module parameters

OpenMP Examples 213

integer, parameter :: N=1000000000, CHUNKSZ=1000000
end module
 !!
subroutine pipedF()
use parameters, ONLY: N, CHUNKSZ
integer :: C, i
real :: z(N)
 !!
interface
 function F(z)
 !$omp declare target
 real, intent(IN) ::z
 real ::F
 end function F
end interface
 !!
 call init(z,N)
 !!
 do C=1,N,CHUNKSZ
 !!
 !$omp task
 !$omp target map(z(C:C+CHUNKSZ-1))
 !$omp parallel do
 do i=C,C+CHUNKSZ-1
 z(i) = F(z(i))
 end do
 !$omp end target
 !$omp end task
 !!
 end do
print*, z
 !!

Fortran

end subroutine pipedF

The following example shows how the task and target constructs are used to
execute multiple target regions asynchronously. The task dependence ensures that the
storage is allocated and initialized on the device before it is accessed.

C/C++
Example 55.2c

#include <stdlib.h>
extern void init(float *, float *, int);
extern void output(float *, int);
void vec_mult(float *p, float *v1, float *v2, int N, int dev)
{
 int i;
 init(p, N);
 #pragma omp task depend(out: v1, v2)
 #pragma omp target device(dev) map(v1, v2)

214 OpenMP API • Version 4.0.1 - February 2014

 {
 // check whether on device dev
 if (omp_is_initial_device())

 abort();
 v1 = malloc(N*sizeof(float));
 v2 = malloc(N*sizeof(float));
 init(v1,v2);
 }
 foo(); // execute other work asychronously
 #pragma omp task depend(in: v1, v2)
 #pragma omp target device(dev) map(to: v1, v2) map(from: p[0:N])
 {
 // check whether on device dev
 if (omp_is_initial_device())

 abort();
 #pragma omp parallel for
 for (i=0; i<N; i++)

 p[i] = v1[i] * v2[i];
 output(p, N);
 free(v1);
 free(v2);
 }

C/C++
}

Fortran

Example 55.2f

The Fortran example uses allocatable arrays for dynamic memory on the device.

 subroutine mult(p, N, idev)
 use omp_lib, ONLY: omp_is_initial_device
 real :: p(N)
 real,allocatable :: v1(:), v2(:)
 integer :: i, idev
 !$omp declare target (init)
 !!
 !$omp task depend(out: v1,v2)
 !$omp target device(idev) map(v1,v2)
 if(omp_is_initial_device()) &
 stop "not executing on target device"
 allocate(v1(N), v2(N))
 call init(v1,v2,N)
 !$omp end target
 !$omp end task
 !!
 call foo() ! execute other work asychronously
 !!
 !$omp task depend(in: v1,v2)
 !$omp target device(idev) map(to: v1,v2) map(from: p)

OpenMP Examples 215

 if(omp_is_initial_device()) &
 stop "not executing on target device"
 !$omp parallel do
 do i = 1,N
 p(i) = v1(i) * v2(i)
 end do
 deallocate(v1,v2)
 !!
 !$omp end target
 !$omp end task
 !!
 call output(p, N)
 !!

Fortran

end subroutine

216 OpenMP API • Version 4.0.1 - February 2014

56 Array Sections in Device Constructs
The following examples show the usage of array sections in map clauses on target
and target data constructs.

This example shows the invalid usage of two seperate sections of the same array inside
of a target construct.

C/C++
Example 56.1c

void foo ()
{
 int A[30];
#pragma omp target data map(A[0:4])
{
 /* Cannot map distinct parts of the same array */
 #pragma omp target map(A[7:20])
 {
 A[2] = 0;
 }
}

C/C++
}

Fortran

Example 56.1f

subroutine foo()
integer :: A(30)
 A = 1
 !$omp target data map(A(1:4))
 ! Cannot map distinct parts of the same array
 !$omp target map(A(8:27))
 A(3) = 0
 !$omp end target map
 !$omp end target data

Fortran

end subroutine

This example shows the invalid usage of two separate sections of the same array inside
of a target construct.

OpenMP Examples 217

C/C++
Example 56.2c

void foo ()
{
 int A[30], *p;
#pragma omp target data map(A[0:4])
{
 p = &A[0];
 /* invalid because p[3] and A[3] are the same
 * location on the host but the array section
 * specified via p[...] is not a subset of A[0:4] */
 #pragma omp target map(p[3:20])
 {
 A[2] = 0;
 p[8] = 0;
 }
}

C/C++
}

Fortran

Example 56.2f

subroutine foo()
integer,target :: A(30)
integer,pointer :: p(:)
 A=1
 !$omp target data map(A(1:4))
 p=>A
 ! invalid because p(4) and A(4) are the same
 ! location on the host but the array section
 ! specified via p(...) is not a subset of A(1:4)
 !$omp target map(p(4:23))
 A(3) = 0
 p(9) = 0
 !$omp end target
 !$omp end target data

Fortran

end subroutine

This example shows the valid usage of two separate sections of the same array inside of
a target construct.

218 OpenMP API • Version 4.0.1 - February 2014

C/C++
Example 56.3c

void foo ()
{
 int A[30], *p;
#pragma omp target data map(A[0:4])
{
 p = &A[0];
 #pragma omp target map(p[7:20])
 {
 A[2] = 0;
 p[8] = 0;
 }
}

C/C++
}

Fortran

Example 56.3f

subroutine foo()
integer,target :: A(30)
integer,pointer :: p(:)
 !$omp target data map(A(1:4))
 p=>A
 !$omp target map(p(8:27))
 A(3) = 0
 p(9) = 0
 !$omp end target map
 !$omp end target data

Fortran

end subroutine

This example shows the valid usage of a wholly contained array section of an already
mapped array section inside of a target construct.

C/C++
Example 56.4c

void foo ()
{
 int A[30];
#pragma omp target data map(A[0:10])
{
 p = &A[0];
 #pragma omp target map(p[3:7])

OpenMP Examples 219

 {
 A[2] = 0;
 p[8] = 0;
 A[8] = 1;
 }
}

C/C++
}

Fortran

Example 56.4f

subroutine foo()
integer,target :: A(30)
integer,pointer :: p(:)
 !$omp target data map(A(1:10))
 p=>A
 !$omp target map(p(4:10))
 A(3) = 0
 p(9) = 0
 A(9) = 1
 !$omp end target
 !$omp end target data

Fortran

end subroutine

220 OpenMP API • Version 4.0.1 - February 2014

57 Device Routines

omp_is_initial_device Routine
The following example shows how the omp_is_initial_device runtime library
routine can be used to query if a code is executing on the initial host device or on a
target device. The example then sets the number of threads in the parallel region
based on where the code is executing.

C/C++
Example 57.1c

#include <stdio.h>
#include <omp.h>
#pragma omp declare target
void vec_mult(float *p, float *v1, float *v2, int N);
extern float *p, *v1, *v2;
extern int N;
#pragma omp end declare target
extern void init_vars(float *, float *, int);
extern void output(float *, int);
void foo()
{
 N = init_vars(&p, &v1, &v2);
 #pragma omp target device(42) map(p[:N], v1[:N], v2[:N])
 {
 vec_mult(p, v1, v2, N);
 }
 output(p, N);
}
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 int nthreads = omp_is_initial_device() ? 8 : 1024;
 if (!omp_is_initial_device())
 {
 printf("1024 threads on target device\n");
 nthreads = 1024;
 }
 else
 {
 printf("8 threads on initial device\n");
 nthreads = 8;
 }
 #pragma omp parallel for private(i) num_threads(nthreads);

OpenMP Examples 221

 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];

C/C++
}

Fortran

Example 57.1f

module params
 integer,parameter :: N=1024
end module params
module vmult
contains
 subroutine vec_mult(p, v1, v2, N)
 use omp_lib, ONLY : omp_is_initial_device
 !$omp declare target
 real :: p(N), v1(N), v2(N)
 integer :: i, nthreads, N
 if (.not. omp_is_initial_device()) then
 print*, "1024 threads on target device"
 nthreads = 1024
 else
 print*, "8 threads on initial device"
 nthreads = 8
 endif
 !$omp parallel do private(i) num_threads(nthreads)
 do i = 1,N
 p(i) = v1(i) * v2(i)
 end do
 end subroutine vec_mult
end module vmult
program prog_vec_mult
use params
use vmult
real :: p(N), v1(N), v2(N)
 call init(v1,v2,N)
 !$omp target device(42) map(p, v1, v2)
 call vec_mult(p, v1, v2, N)
 !$omp end target
 call output(p, N)

Fortran

end program

222 OpenMP API • Version 4.0.1 - February 2014

omp_get_num_devices Routine

The following example shows how the omp_get_num_devices runtime library
routine can be used to determine the number of devices.

C/C++
Example 57.2c

#include <omp.h>
extern void init(float *, float *, int);
extern void output(float *, int);
void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);
 int ndev = omp_get_num_devices();
 int do_offload = (ndev>0 && N>1000000);
 #pragma omp target if(do_offload) map(to: v1[0:N], v2[:N]) map(from: p[0:N])
 #pragma omp parallel for if(N>1000) private(i)
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 output(p, N);

C/C++
}

Fortran

Example 57.2f

subroutine vec_mult(p, v1, v2, N)
use omp_lib, ONLY : omp_get_num_devices
real :: p(N), v1(N), v2(N)
integer :: N, i, ndev
logical :: do_offload
 call init(v1, v2, N)
 ndev = omp_get_num_devices()
 do_offload = (ndev>0) .and. (N>1000000)
 !$omp target if(do_offload) map(to: v1, v2) map(from: p)
 !$omp parallel do if(N>1000)
 do i=1,N
 p(i) = v1(i) * v2(i)
 end do
 !$omp end target
 call output(p, N)

Fortran

end subroutine

OpenMP Examples 223

omp_set_default_device and
omp_get_default_device Routines
The following example shows how the omp_set_default_device and
omp_get_default_device runtime library routines can be used to set the default
device and determine the default device respectively.

C/C++
Example 57.3c

#include <omp.h>
#include <stdio.h>
void foo(void)
{
 int default_device = omp_get_default_device();
 printf("Default device = %d\n", default_device);
 omp_set_default_device(default_device+1);
 if (omp_get_default_device() != default_device+1)
 printf("Default device is still = %d\n", default_device);

C/C++
}

Fortran

Example 57.3f

program foo
use omp_lib, ONLY : omp_get_default_device, omp_set_default_device
integer :: old_default_device, new_default_device
 old_default_device = omp_get_default_device()
 print*, "Default device = ", old_default_device
 new_default_device = old_default_device + 1
 call omp_set_default_device(new_default_device)
 if (omp_get_default_device() == old_default_device) &
 print*,"Default device is STILL = ", old_default_device

Fortran

end program

224 OpenMP API • Version 4.0.1 - February 2014

58 Fortran ASSOCIATE Construct

Fortran

Example 58.1f

This is an invalid example of specifying an associate name on a data-sharing attribute
clause. The constraint in the Data Sharing Attribute Rules section in the OpenMP 4.0
API Specifications states that an associate name preserves the association with the
selector established at the ASSOCIATE statement. The associate name b is associated
with the shared variable a. With the predetermined data-sharing attribute rule, the
associate name b is not allowed to be specified on the private clause.

program example
 real :: a, c
 associate (b => a)
!$omp parallel private(b, c) ! invalid to privatize b
 c = 2.0*b
!$omp end parallel
 end associate
 end program

Example 58.2f

In this example, within the parallel construct, the association name thread_id is
associated with the private copy of i. The print statement should output the unique
thread number.

program example
 use omp_lib
 integer i
!$omp parallel private(i)
 i = omp_get_thread_num()
 associate(thread_id => i)
 print *, thread_id ! print private i value
 end associate
!$omp end parallel
 end program

OpenMP Examples 225

Example 58.3f

This example illustrates the effect of specifying a selector name on a data-sharing
attribute clause. The associate name u is associated with v and the variable v is
specified on the private clause of the parallel construct. The construct
association is established prior to the parallel region. The association between u and
the original v is retained (see the Data Sharing Attribute Rules section in the OpenMP
4.0 API Specifications). Inside the parallel region, v has the value of -1 and u has
the value of the original v.

program example
 integer :: v
 v = 15
associate(u => v)
!$omp parallel private(v)
 v = -1
 print *, v ! private v=-1
 print *, u ! original v=15
!$omp end parallel
end associate

Fortran

end program

226 OpenMP API • Version 4.0.1 - February 2014

	Examples
	1 A Simple Parallel Loop
	2 The OpenMP Memory Model
	3 Conditional Compilation
	4 Internal Control Variables (ICVs)
	5 The parallel Construct
	6 Controlling the Number of Threads on Multiple Nesting Levels
	7 Interaction Between the num_threads Clause and omp_set_dynamic
	8 The proc_bind Clause
	9 Fortran Restrictions on the do Construct
	10 Fortran Private Loop Iteration Variables
	11 The nowait clause
	12 The collapse clause
	13 The parallel sections Construct
	14 The firstprivate Clause and the sections Construct
	15 The single Construct
	16 Tasking Constructs
	17 The taskgroup Construct
	18 The taskyield Directive
	19 The workshare Construct
	20 The master Construct
	21 The critical Construct
	22 Worksharing Constructs Inside a critical Construct
	23 Binding of barrier Regions
	24 The atomic Construct
	25 Restrictions on the atomic Construct
	26 The flush Construct without a List
	27 Placement of flush, barrier, taskwait and taskyield Directives
	28 The ordered Clause and the ordered Construct
	29 Cancellation Constructs
	30 The threadprivate Directive
	31 Parallel Random Access Iterator Loop
	32 Fortran Restrictions on shared and private Clauses with Common Blocks
	33 The default(none) Clause
	34 Race Conditions Caused by Implied Copies of Shared Variables in Fortran
	35 The private Clause
	36 Fortran Restrictions on Storage Association with the private Clause
	37 C/C++ Arrays in a firstprivate Clause
	38 The lastprivate Clause
	39 The reduction Clause
	40 The copyin Clause
	41 The copyprivate Clause
	42 Nested Loop Constructs
	43 Restrictions on Nesting of Regions
	44 The omp_set_dynamic and omp_set_num_threads Routines
	45 The omp_get_num_threads Routine
	46 The omp_init_lock Routine
	47 Ownership of Locks
	48 Simple Lock Routines
	49 Nestable Lock Routines
	50 target Construct
	51 target data Construct
	52 target update Construct
	53 declare target Construct
	54 teams Constructs
	55 Asynchronous Execution of a target Region Using Tasks
	56 Array Sections in Device Constructs
	57 Device Routines
	58 Fortran ASSOCIATE Construct
	Introduction

